
High Performance Computing
using GPUs: Examples from
Computational Biology

Bharat Sukhwani Martin Herbordt

Computer Architecture and Automated Design Laboratory

Department of Electrical and Computer Engineering

Boston University

http://www.bu.edu/caadlab

* This work supported, in part, by the U.S. NIH/NCRR

Why Bother?

� Drug discovery is an expensive process
� Computational methods play an important

role

Molecular Docking

Molecular Docking ≡ Modeling interactions
between two molecules

Computational Task
� Finding the least energy ‘pose’

� Offset and rotation of one relative
to the other

e.g. – Exhaustive search
� Usually performed in two steps

� Rigid Docking – Exhaustive sampling of 3D space

� Energy minimization

Modeling Rigid Docking

� Rigid-body approximation
� Lock and Key model

� Grid based computing

� Exhaustive 6D search

� Pose score = 3D correlation sum

� FFT to speedup the correlation
� Reduces from to

E (α ,β ,γ) = RP (i, j, k) ⋅ LP (i + α , j + β , k + γ)
i, j ,k

∑
p

∑

)(
6

NO)log(3
NNO

Ligand

Receptor

Shape
Elec.

Desol.

Multiple correlations

Computations in Rigid Docking

� Rotation
� Increments of 5 to 15 degrees

� Grid assignment

� Pose score
� FFT, Modulation and IFFT

� Filtering top scores
� Selecting regional best scores

Latency Hiding

PIPER Docking program

- 8 to 22 correlations

Typical serial runtime:

- Per rotation: 10 sec

- Total: Many hours to days!

Direct correlation on GPU

� Multiple correlations together
� For different energy functions

� Replaces steps of FFT, Modulation and IFFT
� Shifting, Voxel-voxel interaction, grid summation

�Each multiprocessor accesses both grids
� Receptor grid Global memory

� Ligand grid Shared memory
(duplicated)

SMP

Global Memory

Shared

Memory

SMP

Shared

Memory

SMP

Shared

Memory

Direct correlation on GPU

� For larger ligand grids
� Store on global memory and swap pieces
� Degrades performance

� For smaller grids - Multiple
rotations
� For 4 cubed grid - 8 rotations
� Multiple computation per fetch

� 2.7x improvement

SMP

Shared Memory

� Shared memory limits the ligand size
� With 8 correlations - 8 cubed ligand

FFT Correlation on GPU

� Minimize host device data transfer
� Perform as many steps on GPU as possible

GPU

O(N3)

O(N3)

FFT / IFFT only

Host

GPU

O(N3) floats

FFT / IFFT + Mod.

Host

GPU

2-10 floats

FFT/IFFT + Mod. + Filtering

Host

� Direct correlation is not attractive for large grids

� Multiple FFTs in serial order
� Using NVIDIA CUFFT library

Scoring and Filtering

�Scoring
� Multiple sets of weights

�Filtering
� Regional Best

�Critical for overall performance

Etotal = w1*Evdw + w2*Eelec + w3*Edesol

K coefficients

SMP

N3 Scores

SMP SMP SMP SMP SMP SMP SMPSMP

Global Memory

Host Memory

Scoring and Filtering on GPU

Unused

Multiprocessors

�Distribute weight-sets on multiprocessors
� Multiprocessors underutilized

�Naïve scheme
� Negative speedup

�Second scheme
�Threads store scores in shared memory
� Serialization at the end

� Thread 0 finds best of best
� Also performs flagging of cells

N3 Scores

T0

Best Score

N3

T0 T1 T2 TM-2 TM-1

N3 Scores

T0

Best Score

M

N 3

Shared Memory

Scoring and Filtering on GPU

�Flagging the neighboring cells
� Serial code:
� Does not fit in GPU shared memory

1 1 0 0 0 1 0

(N3 entries)

�Solution 1 – Exclusion index array
� 2-3x slowdown w.r.t. host filtering 4 5 16 28 45

(100 entries)

�Solution 2 – Bit array on GPU global memory
� One array for each set of weights
� Achieves speedup over host filtering 1 1 0 0 0 1 0

(N3 entries each)

0 0 0 1 1 0 0

Results

For 22 grids

Once per
rotation

Once per
rotation, per
energy grid

185569980Total runtime per rotation

639.5230Scoring and Filtering

504.5240Accumulation of desolvation terms

1711.8205Inverse FFT

500.210Modulation

229.3205Forward FFT

Speedup
GPU Time

(ms)

CPU Time

(ms)
Phase

Speedup for different phases

Results

Correlation only Speedup -
FFT v/s Direct correlation

* Baseline: FFT Correlation on a single core

Correlation only speedups (8 correlations)

2.18

14.63

64.1

266.67

21.3321.33

2.82

180.27

427.25

1442.3

1

10

100

1000

10000

4 cubed 6 cubed 8 cubed 16 cubed 32 cubed

Size of ligand grid

S
p

e
e
d

u
p

s
 (

lo
g

 s
c
a
le

)

GPU Direct Correlation

GPU FFT Correlation

FPGA Direct Correlation

GPU: NVIDIA TESLA C1060

FPGA: Altera Stratix III

CPU: Intel Quad core Xeon @ 3GHz

PIPER Overall Speedup

2.9
6.32

17.7

32

19.18

36.75

0

5

10

15

20

25

30

35

40

4 cubed 8 cubed 16 cubed 32 cubed 64 cubed

Size of ligand grid

S
p

e
e
d

u
p

Multicore Best(4 cores)

GPU Best

FPGA Direct Correlation

* Baseline: PIPER running on single core

Overall Speedup

Energy Minimization

� Minimizing energy between two
molecules
� Iterative process
� Optimization moves

� Used in Molecular Docking and
Mapping Binding sites
� To model flexible side chains

Convergence?

Programs employing Energy Minimization

EADock

RDOCK DARWIN

CSMap

MCSS HOOK

CHARMM
Docking Mapping

FTMap

� Identification of hot-spots by docking small
probes

� Rigid docking using PIPER
� 500 rotations
� 0.8Å grid for translation
� 30 minutes on a single CPU

� Minimize 2000 conformations per protein-probe
complex
� Up to 30 seconds per conformation
� 18 hours per probe!

16 probes

Energy Minimization

Atom
coordinates

- Compute total energy
- Update forces

Energy
Converged?

Max Iter.?

Update atom
coordinates

Update Neighbor
list (if needed)

Min. Energy

Yes

No

Yes

No

Energy Functions

� Looks like MD, but it’s not
� Much smaller number of atoms

� No motion / velocity updates

� Similar energy terms but evaluated differently

� Much smaller atom neighborhoods

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

bondednon-bonded

FTMap Profiling

5.38% 0.2%

94.4%

Electrostatics van der Waals Bonded

1.02%

98.98%

Energy Evaluation Rest

FTMap Minimization Step Energy evaluation phase

Etotal = Evdw + Eelec + Ebond + Eangle + Etorsion

bondednon-bonded

Absolute time ~ 10 ms per
iteration (on single core)

FTMap Electrostatics Model

� Analytic Continuum Electrostatics (ACE)

Atom Self Energy

Pairwise interaction – Generalized Born eqn.

∑
≠

+=
ik

self
ik

is

iself
i E

R

q
E

ε2

2 4

44

322

8

~
2

2

+
+=

−

ikik

ikki

r

ik

iself
ik

r

rVq
e

q
E ik

ik

µπ

τ

ω

τ σ

∑∑
≠

−≠

+

−=
ij r

jiij

ji

ij ij

ji
ij

ji

ij

er

qq

r

qq
E

αα
αα

τ

42

int

2

166332

Born Radii – depends on Eself

Original Data Structure - Neighbor Lists

First Atoms Second Atoms Atoms List

n-1

3

0

1

2
2

0

1

2
1

11
14

2

5

4
15

4

12

3

Self Energy

� Random updates
� Cannot distribute the array – must stay on global memory

� Write conflicts
� Second atom might appear in multiple neighbor lists

Cycle through 1st atoms
– update partial energies

of both

Mapping to CUDA – Difficulties

� Little to no data reuse

� Small computation per iteration

� Multiple accumulations – self energy
of each atom must be computed

� Total runtime dominated by data
transfers

� Accumulation requires serialization

� Random updates

Inherent to
the algorithm

Architecture
related

Mapping to GPU – Neighbor Lists
First

Atoms

Second

Atoms� Separate energy arrays for first and
second atoms

� Allows parallel updates by multiple threads

� Multiple copies of arrays for second atom

� One in each thread block

� Parallel updates – no conflicts

� First arrays reduced to single values

� Second atoms arrays merged by moving
to global memory

� Large copy and accumulation time

� Slow

First

Atom 1

First

Atom 2

First

Atom 3

Shared

Memory for

First Atoms

Shared Memory

for Second

Atoms

First

Atom 0

Global Memory

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0

1
2

3
4

5
6

0

0

0

0
1

1
2

7
8

9

2
2

3

2

1

11

14
2

5
4

15
12

4

Modified Data Structure - Pair List

� 2D neighbor lists � 1D pair list
� Each pair stores energies of the two atoms

involved

� Distribute pairs to multiple threads
� More uniform work distribution

First Atoms Second Atoms

� Compute partial energies in
parallel

� Perform accumulations serially

Mapping Pair List – Initial Attempts

� Pairs distributed on different threads
� Parallel evaluations, serial accumulation

� Accumulation on GPU
� From global memory
� Slow

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8
9

2
2
3

2
1

11
14
2
5
4

15
12
4

� Accumulation on host
� Fast, but requires energy arrays to be transferred

every iteration
� 2x-3x speedup

Mapping Pair List – Improved Scheme

� Pair list with two changes

� Split forward and reverse pair list

� Static mapping of pairs onto GPU threads

Split Pair List

� Problem due to random occurrences of second
atoms

Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8
9

2
2
3

2
1
11
14
2
5
4

15
12
4

� Split into forward and reverse lists
� Forward list: Same as before
� Reverse list: Treat every second atom as a

first atom
� Process only first atoms of each list
� Adds determinism � Better distribution Pair id Atom 1

Atom index

Atom 2 Atom 1 Atom 2

Self energy

0
1
2
3
4
5
6

1
2
2
4
4
5

11
7
8
9

12
14
15

0
0
1
2
3
1
0
2
0
2

Forward List

Reverse List

Static Mapping - Assignment Table

� Pairs can be grouped by first atom
� Groups mapped to different thread blocks

� Look for next block with enough threads

Thread

Block 0

Thread
Block 1

Does not fit
on TB_0

Unused threads
used by next group

Group 0

Group 3

Group 1

Group 2

Num.
Atoms

Pair Id Atom
1

0
1
2
3
4
5
6

0

0
0
0
3
1
1

7
8

9

2
2
2

2

1
11
14
4
2
5
4

15
12

Thread
Id

0
1
2
3
9
4
5
6
7
8

Master

1

0
0
0
1
1
0
1
0
0

4

4
4
4
1
2
2
3
3
3

Atom
2

� One pair per thread (multiple if Npair > Nthreads)
� Reverse Assignment table for second atoms

Computing and Accumulating Energies

� Threads store partial energies in shared memory
� Address = Local Thread Id

Master

Thread
Tid=5

Master
Thread

Tid=12

Master

Thread
Tid=0

Global
Memory

Num.
Atoms

Pair Id Atom 1

0

1

2

3
4

0

0

0
0

3

2

1

11
14

4

Thread Id

0

1

2

3

9

Master

1

0

0
0

1

4

4

4
4

1

Atom 2

� Master thread performs accumulation
� ‘N’ locations starting from its thread id

� Multiple parallel accumulations per
thread block (from shared memory)

Shared

Memory

0

Num_Thr - 1

Group 0

Group 1

Group 2

Results

� NVIDIA TESLA C1060
� Three GPU Kernels

� Self energy and gradient computation
� Pairwise interaction and gradient computation
� Force updates

Computation
Serial Time

(per iteration)
GPU Time Speedup

Self energies 6.15 ms 0.22 ms 27.9x

Pairwise 2.75 ms 0.23 ms 11.9x

Force updates 0.95 ms 0.14 ms 6.7x

Results – Overall Speedup

Complex Serial Time GPU Time Speedup

Complex 1 11.9 sec 1.098 sec 10.8x

Complex 2 11.87 sec 1.078 sec 11x

Complex 3 11.8 sec 1.078 sec 10.9x

Complex 4 10.74 sec 0.906 sec 11.8x

Complex 5 11.87 sec 1.094 sec 10.8x

� 5 different protein-probe complexes
� ~2200 atoms per complex
� ~9800 atom-atom pairs
� 1000 iterations per complex

Conclusion

� Docking and Mapping are computationally
demanding

� GPUs provide high FP capability, but …
� … must

� minimize host-board transfer!
� map computations to threads efficiently!
� perform large computations per datum

transferred!

Thank You!

