High Performance Computing using GPUs: Examples from Computational Biology

Bharat Sukhwani

Martin Herbordt

Computer Architecture and Automated Design Laboratory Department of Electrical and Computer Engineering Boston University <u>http://www.bu.edu/caadlab</u>

* This work supported, in part, by the U.S. NIH/NCRR

Drug discovery is an expensive process
 Computational methods play an important role

Molecular Docking

Molecular Docking ≡ Modeling interactions between two molecules

Computational Task

- Finding the least energy 'pose'
 - Offset and rotation of one relative to the other

e.g. – Exhaustive search

- Usually performed in two steps
 - □ Rigid Docking Exhaustive sampling of 3D space
 - Energy minimization

Modeling Rigid Docking

- Rigid-body approximation
 - □ Lock and Key model
- Grid based computing
- Exhaustive 6D search
- Pose score = 3D correlation sum

$$E(\alpha, \beta, \gamma) = \sum_{p} \sum_{i, j, k} R_{p}(i, j, k) \cdot L_{p}(i + \alpha, j + \beta, k + \gamma)$$

Ligand

Receptor

Shape Elec.

Desol.

□ FFT to speedup the correlation □ Reduces from $O(N^6)$ to $O(N^3 \log N)$

Computations in Rigid Docking

Direct correlation on GPU

- Replaces steps of FFT, Modulation and IFFT
 - Shifting, Voxel-voxel interaction, grid summation
- Each multiprocessor accesses both grids
 - \Box Receptor grid \Longrightarrow Global memory
 - Ligand grid Shared memory (duplicated)
- Multiple correlations together
 - □ For different energy functions

Direct correlation on GPU

- □ Shared memory limits the ligand size
 - □ With 8 correlations 8 cubed ligand
- For larger ligand grids
 - Store on global memory and swap pieces
 - Degrades performance
- For smaller grids Multiple rotations
 - For 4 cubed grid 8 rotations
 - Multiple computation per fetch
 - 2.7x improvement

FFT Correlation on GPU

- Direct correlation is not attractive for large grids
- Multiple FFTs in serial order
 - Using NVIDIA CUFFT library
- Minimize host device data transfer
 - Perform as many steps on GPU as possible

Scoring and Filtering

 $E^{total} = w1^*E^{vdw} + w2^*E^{elec} + w3^*E^{desol}$

Critical for overall performance

Scoring

Multiple sets of weights

Giltering

Regional Best

		X	X	X					
		X	0	X					
		X	X	X					
					X	X	X		
					X	•	X		
X	X	X			X	X	X		
×	•	X							
X	X	X							

Scoring and Filtering on GPU

Distribute weight-sets on multiprocessors

Multiprocessors underutilized

Naïve scheme
Negative speedup

Second scheme

Threads store scores in shared memory

- Serialization at the end
 - □ Thread 0 finds best of best
 - Also performs flagging of cells

Achieves speedup over host filtering

Results

Speedup for different phases

	Phase	CPU Time (ms)	GPU Time (ms)	Speedup
Once per	Forward FFT	205	9.3	22
rotation, per	Modulation	10	0.2	50
energy grid	Inverse FFT	205	11.8	17
Once per	Accumulation of desolvation terms	240	4.5	50
rotation	Scoring and Filtering	230	39.5	6
For 22 grids	Total runtime per rotation	9980	556	18

Results

Correlation only Speedup - FFT v/s Direct correlation

Overall Speedup

GPU: NVIDIA TESLA C1060

FPGA: Altera Stratix III

CPU: Intel Quad core Xeon @ 3GHz

Energy Minimization

- Minimizing energy between two molecules
 - Iterative process
 - Optimization moves
- Used in Molecular Docking and Mapping Binding sites
 - To model flexible side chains

FTMap

Identification of hot-spots by docking small probes 16

Rigid docking using PIPER

- □ 500 rotations
- 0.8Å grid for translation
- □ 30 minutes on a single CPU

- Minimize 2000 conformations per protein-probe complex
 - □ Up to 30 seconds per conformation
 - □ 18 hours per probe!

Energy Minimization

Energy Functions

$$E^{total} = \underbrace{E^{vdw} + E^{elec}}_{non-bonded} + \underbrace{E^{bond} + E^{angle} + E^{torsion}}_{bonded}$$

Looks like MD, but it's not

- Much smaller number of atoms
- □ No motion / velocity updates
- □ Similar energy terms but evaluated differently
- Much smaller atom neighborhoods

FTMap Profiling

FTMap Electrostatics Model

Analytic Continuum Electrostatics (ACE)

Atom Self Energy

$$E_{i}^{self} = \frac{q_{i}^{2}}{2\varepsilon_{s}R_{i}} + \sum_{k \neq i} E_{ik}^{self} \qquad E_{ik}^{self} = \frac{\tau q_{i}^{2}}{\omega_{ik}} e^{-\left(\frac{r_{ik}^{2}}{\sigma_{ik}^{2}}\right)} + \frac{\tau q_{i}^{2}\tilde{V}_{k}}{8\pi} \left(\frac{r_{ik}^{3}}{r_{ik}^{4} + \mu_{ik}^{4}}\right)^{4}$$

Pairwise interaction – Generalized Born eqn.

$$E_{ij}^{\text{int}} = 332 \sum_{j \neq i} \frac{q_i q_j}{r_{ij}} - 166 \tau \sum_{j \neq i} \frac{q_i q_j}{\sqrt{r_{ij}^2 + \alpha_i \alpha_j}} - \left(\frac{r_{ij}^2}{4\alpha_i \alpha_j}\right)$$

Born Radii – depends on E^{self}

Original Data Structure - Neighbor Lists

Random updates

□ Cannot distribute the array – must stay on global memory

Write conflicts

□ Second atom might appear in multiple neighbor lists

Mapping to CUDA – Difficulties

- Little to no data reuse
- Small computation per iteration
- Multiple accumulations self energy of each atom must be computed
- Total runtime dominated by data transfers
- Accumulation requires serialization
- Random updates

Inherent to the algorithm

Architecture related

Mapping to GPU – Neighbor Lists

First Second Separate energy arrays for first and Atoms Atoms second atoms □ Allows parallel updates by multiple threads Multiple copies of arrays for second atom Shared Shared Memory Memory for for Second □ One in each thread block **First Atoms** Atoms Parallel updates – no conflicts Global Memory First First arrays reduced to single values Atom 0 Second atoms arrays merged by moving First Atom 1 to global memory First □ Large copy and accumulation time Atom 2 □ Slow First Atom 3

Modified Data Structure - Pair List

- □ 2D neighbor lists \rightarrow 1D pair list
 - Each pair stores energies of the two atoms involved
- Distribute pairs to multiple threads
 - More uniform work distribution
- Compute partial energies in parallel
- Perform accumulations serially

Second Atoms

First Atoms

Mapping Pair List – Initial Attempts

Pairs distributed on different threads

Parallel evaluations, serial accumulation

- Accumulation on GPU
 - From global memory
 - Slow
- Accumulation on host
 - Fast, but requires energy arrays to be transferred every iteration
 - □ 2x-3x speedup

	Atom index		Self er	nergy
Pair id	Atom 1	Atom 2	Atom 1	Atom 2
0	0	2		
1	0	1		
2	Õ	11		
3	ŏ	14		
4	Ĭ	2		
5	1	5		
6	2	4		
7	2	15		
8	2	12		
9	3	4		

Mapping Pair List – Improved Scheme

Pair list with two changes

- □ Split forward and reverse pair list
- □ Static mapping of pairs onto GPU threads

Split Pair List

Problem due to random occurrences of second atoms
Forward List

Split into forward and reverse lists

- Forward list: Same as before
- Reverse list: Treat every second atom as a first atom
- Process only first atoms of each list
- □ Adds determinism \rightarrow Better distribution

Reverse List

One pair per thread (multiple if N_{pair} > N_{threads})
 Reverse Assignment table for second atoms

Computing and Accumulating Energies

Threads store partial energies in shared memory

Address = Local Thread Id

				\frown	
Thread Id	Pair Id	Atom 1	Atom 2	Master	Num. Atoms
0	0	0	2	1	4
1	1	0	1	0	4
2	2	0	11	0	4
3	3	0	14	0	4
4	9	3	4	1	1
					1

- Master thread performs accumulation
 - `N' locations starting from its thread id

Multiple parallel accumulations per thread block (from shared memory)

Results

□ NVIDIA TESLA C1060

Three GPU Kernels

- Self energy and gradient computation
- Pairwise interaction and gradient computation
- Force updates

Computation	Serial Time (per iteration)	GPU Time	Speedup	
Self energies	6.15 ms	0.22 ms	27.9x	
Pairwise	2.75 ms	0.23 ms	11.9x	
Force updates	0.95 ms	0.14 ms	6.7x	

Results – Overall Speedup

- 5 different protein-probe complexes
 - □ ~2200 atoms per complex
 - □ ~9800 atom-atom pairs
 - □ 1000 iterations per complex

Complex	Serial Time	GPU Time	Speedup
Complex 1	11.9 sec	1.098 sec	10.8x
Complex 2	11.87 sec	1.078 sec	11x
Complex 3	11.8 sec	1.078 sec	10.9x
Complex 4	10.74 sec	0.906 sec	11.8x
Complex 5	11.87 sec	1.094 sec	10.8x

Conclusion

- Docking and Mapping are computationally demanding
- GPUs provide high FP capability, but ...

🛯 ... must

- minimize host-board transfer!
- map computations to threads efficiently!
- perform large computations per datum transferred!

Thank You!