
Many-core Acceleration for
Biomedical Applications

David Kaeli

Miriam Leeser

Department of Electrical and Computer Engineering

Northeastern University

Boston, MA

November 12, 2009

Collaborators and Participants

! Mike Murphy – NVIDIA

! John Cavazos – Univ. of Delaware

! Greg Sharp, Homer Pien, Rick Moore - MGH

! Ph.D. students

! Rodrigo Dominguez

! Byunghyun Jang

! Perhaad Mistry

! Nicholas Moore

! Dana Schaa

! Undergrads

! Chanelle Green, Chawandia Mack – Spelman

! Justin White - Northeastern

! Every desktop and laptop has a GPU on board

! Graphics Processing Units – NVIDIA, AMD

Firestream/Fusion, IBM Cell, Intel Larrabee

! Cost-effective desktop supercomputing!!

! User-friend programming interfaces and tools

! CUDA (NVIDIA)

! CTM/Brook+ (AMD)

! OpenCL

GPUs are Everywhere!

A wide range of GPU applications

 3D image analysis

 Adaptive radiation therapy

 Acoustics

 Astronomy

 Audio

 Automobile vision

 Bioinfomatics

 Biological simulation

 Broadcast

 Cellular automata

 Fluid dynamics

 Computer vision

 Cryptography

 CT reconstruction

 Data mining

 Digital cinema / projections

 Electromagnetic simulation

 Equity training

 Film

 Financial

 Languages

 GIS

 Holographics cinema

 Machine learning

 Mathematics research

 Military

 Mine planning

 Molecular dynamics

 MRI reconstruction

 Multispectral imaging

 N-body simulation

 Network processing

 Neural network

 Oceanographic research

 Optical inspection

 Particle physics

 Protein folding

 Quantum chemistry

 Ray tracing

 Radar

 Reservoir simulation

 Robotic vision / AI

 Robotic surgery

 Satellite data analysis

 Seismic imaging

 Surgery simulation

 Surveillance

 Ultrasound

 Video conferencing

 Telescope

 Video

 Visualization

 Wireless

 X-Ray

Developing a suite of Biomedical Image
Reconstruction Libraries – CUDA/OpenCL

! Target applications:

! Deformable registration - radiation oncology

! 3-D Iterative reconstruction – cardio-
vascular imaging

! Maximum likelihood estimation – Digital
Breast Tomosynthesis

! Motion compensation in PET/CT images -
cardiovascular imaging

! Hyperspectral imaging – skin cancer
screening

! Image segmentation – brain imaging

Performance of Two Imaging
Applications on a GPU

! 3-D Tomosynthesis Image Reconstruction

! Reduces false-positive rates during breast cancer screening

! Utilizes a limited angle tomography approach using many 2-D
images to generate a 3-D image

! Performs an iterative Maximum Likelihood Estimation for 3-D
image reconstruction

! Performance is a barrier to image-guided biopsy

! 3-D Spiral Cone-Beam Cardiac Image Reconstruction

! Key new approach for identifying blockage in coronary arteries

! Performs a least squares image reconstruction

! Involves a forward and backward projection

! Performance is a barrier to improve image quality

Conventional 2-D MammographyConventional 2-D Mammography

Nature of breast cancer screening work:Nature of breast cancer screening work:

"" For each 1000 women screened with mammography:For each 1000 women screened with mammography:

!! ~80 (varies from 50 to 130) are called back for additional ~80 (varies from 50 to 130) are called back for additional

imaging - (X-ray, US, MRI)imaging - (X-ray, US, MRI)

!! ~20 are recommended for some form of biopsy ~20 are recommended for some form of biopsy

!! ~3-7 cancers will be discovered on pathology from these ~3-7 cancers will be discovered on pathology from these

biopsiesbiopsies

"" Overall this yields: Overall this yields:

!! Reduction in US breast cancer mortality: 30%Reduction in US breast cancer mortality: 30%

!! Sensitivity: 85% of all breast cancers will be detected by Sensitivity: 85% of all breast cancers will be detected by

mammographymammography

!! Specificity: 80 false positives in 1000 screenings Specificity: 80 false positives in 1000 screenings

!! Positive predictive value (biopsy): ~25% Positive predictive value (biopsy): ~25%

Conventional 2-D MammographyConventional 2-D Mammography

"" Is this good enough? Is this good enough?

!! Positive predictive value: (~25%) 3 of 4 biopsies are benign whichPositive predictive value: (~25%) 3 of 4 biopsies are benign which

carries a high emotional load and additional costcarries a high emotional load and additional cost

"" Problems are caused by superimposed tissue Problems are caused by superimposed tissue

(structure noise)(structure noise)

!! Missed cancers (false-negatives)Missed cancers (false-negatives)

!! A cancer is obscured by superimposed breast tissue A cancer is obscured by superimposed breast tissue

!! Unnecessary callbacks (false-positives) Unnecessary callbacks (false-positives)

!! Superimposed normal breast tissue may look like a tumor in a 2-D Superimposed normal breast tissue may look like a tumor in a 2-D

mammogrammammogram

Digital Breast Tomosynthesis (DBT)Digital Breast Tomosynthesis (DBT)

 —— 2 2ndnd generation GE prototype generation GE prototype

Detector:Detector:

-- 300msec readout time 300msec readout time

-- 23cm ! 19.2 cm area 23cm ! 19.2 cm area

-- 100 100 micronmicron pixel size pixel size

Acquisition:Acquisition:

-- 15 projections 15 projections

-- 40 40
oo
 arc arc

-- 15s acquisition 15s acquisition

-- Mo and Rh anodes Mo and Rh anodes

-- same dose as CC+MLO same dose as CC+MLO

-- 360 360
oo
 gantry rotation gantry rotation

permits all standard viewspermits all standard views

Set 3D volume (guess)

Compute

projections Forward

Correct 3D volume

Backward

3D volume
(1196x2304x45)

X-ray

projections

Detector

(1196x2304)

X-ray source

(15 views)

Tomosynthesis Image Reconstruction

Tomosynthesis Acceleration Study

1. Workstation
! Single Intel quad-core Xeon 3.2 GHz
! Multithreaded implementation
! 4 GB of RAM

2. Cluster A – Teracluster
! 2.0 GHz Xeon Pentium M
! 2 CPUs per server, dual core CPUs
! 8 GB of RAM per server
! Gigabit ethernet switch

3. Cluster B – Opportunity Cluster
! 3.2 GHz Xeon EMT 64 processors
! 2 CPUs per server
! 4 GB of RAM per server
! Gigabit ethernet switch

4. NVIDIA 8800 GTX GPU
! CUDA 2.0

Tomosynthesis acceleration on a GPU

Speedup and $/sec of Breast Tomosynthesis
Reconstruction* on a NVIDIA GTX8800

What can a GPU buy you?What can a GPU buy you?
Reconstructions in 1.5Reconstructions in 1.5 secs on 3 NVIDIA 280secs on 3 NVIDIA 280’’ss

Reconstruction Computing PerformanceReconstruction Computing Performance

Impacting heart disease with GPUs

" Currently, coronary heart disease (CHD) is the single leading
cause of death in America

" 3D CT imaging can be used to identify vulnerable plaque

" Forward and backward projection of 3D helical cone beam CT
have been implemented on a NVIDIA Tesla S870 multi-GPU
platform using CUDA

CPU GPU

Impacting heart disease with GPUs

! Single GPU speedup versus multi-threaded dual-core
CPU execution – 20.3x forward / 17.8x backward

! A series of optimizations applied, includes utilizing
multiple GPUs – 71.3x forward / 137x backward

* Collaboration with Synho Do (MGH), Clem Karl (BU) and Homer Pien (MGH)

Forward projection Backward projection

GPU Strengths

! Supercomputing on the desktop

! Easy to program (small learning curve)

! Many demonstrated successes accelerating
complex applications

! CUDA allows us to read and write data at
any location in the device memory

! Memory close to the processors (registers +
shared memory)

GPU Limitations

! Porting applications to the latest-and-greatest
hardware becomes a time-consuming task
! Suggests we need to raise the abstraction level

! OpenCL is a step in the right direction

! Many microarchitectural details are hidden
! Performance optimization requires deep knowledge of

the microarchitecture

! Better tools are needed
! Register usage

! Memory blocking and layout

! Aggressive threading schemes

! Multi-GPU exploration

! What do researchers want??
! Semi-automatic tuning

GPU Acceleration

! Multi-GPU acceleration

! Memory coalescing and loop vectorization

! PTX optimization

! Library optimization

How can we more effectively exploit GPUs?

! We are developing a suite of biomedical imaging
libraries specific to GPUs
! Plan to target both CUDA (performance) and OpenCL

(portability)

! We are expanding on our previous work on a
profile-guided approach for CUDA code to guide
users on the best target multi-GPU platform for
the specific application

D. Schaa and D. Kaeli, “Exploring the Multiple-GPU Design Space,'‘
IEEE International Parallel and Distributed Processing Symposium,
Best Paper Award, May 2009.

Multi-GPU Design Space Exploration

$ Predict performance for GPU programs while
scaling either the number of GPUs or the input
data size

$ Select the optimal configuration of GPUs
(distributed/multi-system or shared-
memory/multi-processing, and how many)
without having to purchase hardware

$ Avoid architecture-specific optimizations which
limit scalability and portability to future
generations of hardware

Requirements for Performance Prediction

System-specific Inputs

$ Network bandwidth

$ PCIe bandwidth to GPU

$ Disk throughput

$ RAM size

Algorithm-specific Inputs

$ Communication requirements

$ Reference (single-GPU)

implementation

Variables

$ Number of GPUs

$ Data set sizes

$ GPU Configurations

Model Predicted
execution

times

Current GPU Optimizations

$ Loop Vectorization – targeting the vector architecture provided
for on the AMD Firestream platform

$ Targets linearizing data to improve the number of loops that
can vectorized on AMD GPUs

A[0:N] [0:M]
B[0:N] [0:M]
for (i1=0;ii1<N;i1++)
For (i2=0;i2<=M;i2++)
A[i1][i2]=B[i1][M-i2]+1;

A[0:N] [0:M]
B[0:N] [M:0]
for (i1=0;ii1<N;i1++)
For (i2=0;i2<=M;i2++)
A[i1][i2]=B[i1][i2]+1;

Transform
Array B

*To appear at PPOPP 2010

Loop vectorization

$ Loop Vectorization – targeting the vector architecture provided
for on the AMD Firestream platform

$ Targets linearizing data to improve the number of loops that
can vectorized on AMD GPUs

A[0:N] [0:M]
B[0:N] [0:M]
for (i1=0;ii1<N;i1++)
For (i2=0;i2<=M;i2++)
A[i1][i2]=B[i1][M-i2]+1;

A[0:N] [0:M]
B[0:N] [M:0]
for (i1=0;ii1<N;i1++)
For (i2=0;i2<=M;i2++)
A[i1][i2]=B[i1][i2]+1;

Transform
Array B

*To appear at PPOPP 2010

Obtained up to
11X speedup

over scalar code for
Livermore Loops

GPU Memory Accessible in CUDA

! Mapped host memory: up to 4GB, ~5.7GB/sec
bandwidth (PCIe), accessible by multiple GPUs

! Global memory: up to 4GB, high latency (~600 clock
cycles), 140GB/sec bandwidth, accessible by all
threads, atomic operations (slow)

! Texture memory: read-only, cached, and
interpolated/filtered access to global memory

! Constant memory: 64KB, read-only, cached, fast/low-
latency if data elements are accessed in unison by
peer threads

! Shared memory:16KB, low-latency, accessible
among threads in the same block, fast if accessed
without bank conflicts

Memory Optimizations

$ Memory Selection and Coalescing on NVIDIA GPUs

$ Multiple memory spaces are exposed to the program on
NVIDIA GPUs – a remnant of graphics

Memory Location Cached Access Scope

Global Off Chip No R/W Thread Grid

Constant Off Chip Yes R Thread Grid

Texture Off Chip Yes R Thread Grid

Local Off Chip No R/W Thread

Shared On Chip N/A R/W Thread Block

Register On Chip N/A R/W Thread

$ Mathematical framework developed that characterizes loop-
based array iteration spaces

$ Applied mapping framework to Parboil and PhysBAM
programs

$ Speedups ranged from 1.3X to 15X speedup

GPU Optimizations –
Rematerialization in PTX

! Goal: Reduce register pressure in
PTX code which should improve
performance on NVIDIA GPU

! Implemented a backward list
scheduler that arranges instructions
within a basic block

! Performs liveness analysis and builds
a data dependence graph

! The scheduler iterates through the
ready list evaluating a cost function
depending on the set of registers live
and the use-defs of each instruction

! We rematerialize selected registers
based on lifetimes and register
pressure

*Presented at NVISIONS 2009

SC09 - Joint work with J. Cavazos, U. Delaware and M. Smith, NVIDIA

Library Construction for GPUs

! System-wide mapping:
different parts of an
application may run better
on the CPU or GPU

! Developing general GPU
solutions for multiple
problem instances is difficult

! Matching the architecture is
important

! Select a thread hierarchy with
limited shared resources
(shared memory, registers)

! Exploit the characteristics of
the memory hierarchy

MATLAB OpenCL API (MOCA)

! MOCA aids implementation space exploration

! Currently binds to CUDA, but designed to work with
OpenCL

! Raises the level of abstraction for faster and easier
development

! Data structures track multiple aspects of host and GPU
resources

! Functions wrap up numerous API calls into larger tasks

! Front end catches some errors producing useful
diagnostics

! Hides different code for different memory types

! Concentrates CUDA code for a given activity in one
location

! Goal: use MOCA functionality to explore proper
parameterization of GPU libraries for adaptability

Case Study: Lung Tumor Tracking

! Based on a MATLAB lung tumor
tracking application by Cui, et al.

! Matches a tumor template with
incoming imagery using 2D
correlations – corr2() in
MATLAB

! Application handles variation
during respiration by using
multiple tumor templates and
searching a region of interest
around the original template
location

! Results in greater computational
requirements – a 2D correlation
for each template for each
position in the ROI for each
video frame

Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple template-based fluoroscopic
tracking of lung tumor mass without implanted fiducial markers." Physics in medicine and biology,
vol. 52, no. 20, pp. 6229–42, 2007.

Data Set Parameters

! Data set includes parameters that are not powers of two

! Total computational requirements vary on corr2() calls and
template sizes

! GPU implementation launches all of the 2D correlations in
parallel

! Six individual GPU kernel are used to implement the parallel
corr2()

! Current kernels can be improved: no shared memory usage and
uncoalesced global memory accesses

Explored Memory Mappings

! MOCA was used to move
application data into different GPU
memory types

! Frame and template data in global or
texture memory

! Runtime compared to a second
MATLAB implementation optimized
with knowledge from studying the
application

! Textured template data improved
the average GPU speedup from 22
to 31 (85 to 133 max.)

! Data locality in template accesses
allows the cached texture memory to
offer improved performance

Summary of MOCA

! MOCA is useful for exploring CUDA implementation
space
! Memory type selection can be an important factor

! MOCA abstractions don't hinder (but help!)
performance
! Implementation choices/optimizations are exposed to the

user

! Optimal GPU/CPU mapping is often not 1:1
! MOCA allows implementing functionality across the CPU/GPU

boundary

! Future work: data reorganization to improve GPU
memory hierarchy performance, other GPU vendors,
general MOCA improvements

! Focus on the optimal dimensions for parameterization
and representation within a library

! Parameterized library code applicable to a range of
uses and scenarios -- focus on memory as well as
kernels

Ongoing Work on GPU Acceleration

! Physics-based simulation (PHYSBAM)
acceleration
! Surgery simulator – Simquest

! Machine learning algorithms
! Medical image analysis

! Security

! GPU@Home
! Utilize idle GPUs

Summary and Future Work

$ GPUs are revolutionizing biomedical computing

$ Biomedical imaging applications need to be
developed in portable languages and libraries

$ We can quickly determine the best GPU configuration
from our estimation without purchasing hardware

$ Programmer does not need to focus on low-level
optimization – instead, exploit another GPU

$ Programmer can move more easily between different
versions of hardware – libraries

$ Future work

$ Deliver new modeling and biomedical GPU library

$ Develop libraries based on OpenCL

$ Consider a wider range of GPU/CPU configurations

For more info on GPGPUs

! Workshop on GPU Computing for Biomedical
Research– 10/22 @ Harvard Medical School
! http://nebiogrid.org/biomed-gpu-workshop-2009

! GPGPU3 - 3rd workshop focused on utilizing GPUs
for general purpose computing - to be held at
ASPLOS 2010

! First Workshop on Language, Compiler and
Architecture Support for GPGPU - to be held at
HPCA 2010 in Bangalore

! IEEE Transactions on Parallel and Distributed
System special issues on Hardware Accelerators –
focused on GPUs

! Also check out: http://www.gpgpu.org

Questions?

