Goals for our *"Experimental GPU cluster for Fundamental Physics"*

Brower, Barba, Rebbi And Bruce Boghosian

support by NSF grant number OCI-0946441

Project

- Build multi-GPU cluster to enable experimentation with algorithms, programming strategies, and system software etc.
 - Goal is peak performance on latest technology
 - Prototype for GPGPU at FERMI/Jlab & DOE SciDAC software
- First Target application:
 - Lattice Field Theory (QCD):
 - Brower /Rebbi/Clark/Babich et al
 - Computational Fluid Dynamics (CFD):
 - Barba/Boghosian/
- Train students in multi-core parallel programming
 - Using CUDA, OpenCL, Python, etc.

Harvard/BU Cuda Center of Excellence

• Disruptive QCD Technology! Graphic Processor Units

Nvidia's Fermi GPU: 512 cores x 32 bit FPU

4 GigaByte Mem, 1 Tflop peak

•GPU/BU code sent to Jefferson Lab for 3 million \$ ARRA Cluster ⇒ 5 x performance @ 20% extra cost

Historical Perspective: First "commercial" QCD machine

http://www.mission-base.com/tamiko/cm/cm-tshirt.html

First University installation in 1989*

*(from left) Roscoe Giles, Glenn Bresnahan and Claudio Rebbi with CM-2

In late 1980's Thinking Machines Corporation the 64K I bit processer CM-2 with performance in excess of 2500 MIPs, and floating point above 2.5Gflops

Killed by Beowulf-clusters

[†] LLNL BG/L weak scaling up to 131,072 cores: 2006 Gordon Bell award by Vranas, Bhanot, Blumrich, Chen, Gara, Giampapa, Heidelberger, Salapura and Sexton

BUT THIS IS NOT SUFFICIENT

K. Wilson (1989 Capri)

"'lattice gauge theory could also require a <u>10⁸ increase in</u> <u>computer</u> power AND <u>spectacular algorithmic</u> advances before useful interactions with experiment ..."

VS

- ab initio Chemistry
 1930+50 = 1980
- 2. 0.1 flops → 10 Mflops
- 3. Gaussian Basis functions

- ab initio QCD
 1. 1980 + 50 = 2030?*
- 2. 10 Mflops → 1000 Tflops
- 3. Clever Collective Variable?

*Hopefully sooner but need 1/M flops \rightarrow 1/G flops!

Disruptive many-core Architectures

I/4 CM-2
 Nvidia FERMI chip

16 K bit serial PE. \Rightarrow 512 x 32 bit PE = 16 K bits

Heterogeneous Challenge:

Physics & Algorithms & Hardware ALL are becoming multi-scaled!

- Higher resolution lattices:
 a(lattice) << 1/M_{proton} << 1/m_π << L (box)
 - 0.06 fermi << 0.2 fermi << 1.4 fermi << 6.0 fermi

3.3 x 7 x 4.25 \simeq 100

QCD Physics

 $MG + GPU => 50 \times speed up per$?

Broader impact

- Initial target applications in Lattice Field Theory and Computational Fluid Dynamics.
- But also to be a catalyst for local researchers in many fields to explore GPU architectures and share experience and methods.
- Access to faculty, post docs, graduate and undergraduate students in nano technology, chemistry, biological modeling, medical imaging, etc.
- Educational context and impact is crucial advantage of university based experimental GPGPU cluster!

FINI

Launch workshop for the NSF-funded Experimental GPU cluster for fundamental physics

organized by Lorena Barba, Richard Brower, Claudio Rebbi

Thursday, Nov. 12

9-9:10am Welcome & Introductions, Claudio Rebbi

9:10–9:30am Richard Brower, Boston University "Potential impact of the 'Experimental GPU cluster for Fundamental Physics' NSF grant"

9:30–10:20am Hanspeter Pfister, Harvard University "High-throughput science"

10:20-10:50am BREAK

10:50am-11:40pm David Luebke, Nvidia "Graphics hardware & GPU computing: past, present, and future"

11:40–12:10pm Richard Edgar, Harvard University "Diesel-powered supercomputing"

12:10–12:40pm David Kaeli, Northeastern University "Many-core acceleration in biomedical applications"

12:40-2pm LUNCH - sandwiches will be provided

2-2:30pm Michael Clark, Harvard University "GPU mixed-precision linear equation solver for lattice quantum chromodynamics, QCD"

2:30–3pm Andreas Klöckner, Brown University "GPU metaprogramming using PyCUDA: methods and applications"

3-3:30 Nicolas Pinto, MIT "Unlocking brain-inspired computer vision"

3:30-4pm BREAK

4-4:30pm Bharat Sukhwani, Boston University "High-performance computing using GPUs: examples from computational biology"

4:30–5pm Lorena Barba, Boston University "Toward GPU-accelerated meshfree flow simulation"

5–5:30pm Tsuyoshi Hamada, Nagasaki University "42 TFlops N-body simulations on GPUs"

5:30pm Panel Discussion

Tutorial, Friday Nov. 13

9am-12pm "CPU/GPU programming with CUDA"

Performance Per MFLOP

Performance Per Watt

Performance Per \$

I. SciDAC API for Lattice QCD

Lattice QCD was formulated in 1974: Kenneth G. Wilson, Confinement of Quarks. Phys.Rev.D10:2445-2459,1974.

Nvidia Tesla Quad S1070 1U System \$8K

Processors	4 x Tesla T10P
Number of cores	960
Core clock	1.5 Hz
Performance	4 Teraflops
memory BW	16.0 GB
bandwidth	408 GB/sec
Memory I/0	2048 bit,800MHz
Form factor	1U (EIA 19" rack)
System I/O	2 PCIe x 16 Gen2
Typical power	700 W

Card	Cores	Bandwidth (GiB/s)	GFLOPS	Device Memory
8800 GTX	128	86.4	518.0	768 MB
Tesla C870	128	76.8	518.4	1.5 GB
GTX 280	240	141.7	933	1 GB
Tesla C1060	240	102	1000	4 GB

Spec for Fermi GPU!

GPU	G80	GT200	Fermi
Transistors	681 million	1.4 billion	3.0 billion
CUDA Cores	128	240	512
Double Precision Floating Point Capability	None	30 FMA ops / clock	256 FMA ops /clock
Single Precision Floating Point Capability	128 MAD ops/clock	240 MAD ops / clock	512 FMA ops /clock
Warp schedulers / SM	1	1	2
Special Function Units (SFUs) / SM	2	2	4
Shared Memory / SM	16 KB	16 KB	Configurable 48 KB or 16 KB
L1 Cache	None	None	Configurable 16 KB or 48 KB
L2 Cache	None	None	768 KB
ECC Memory Support	No	No	Yes
Concurrent Kernels	No	No	Up to 16

 Joining NVIDIA press conference was <u>Oak Ridge National Laboratory</u> who announced plans for a new supercomputer that will use NVIDIA GPUs based on the Fermi architecture.

Lack of Critical slowing down:

CG iteration count is insensitive to quark mass and lattice volume!

m(-0.38922)

				$m_{s}(-0.00022)$		
Lattice volumes						
Mass:	$16^3 \times 64$	$24^3 \times 64$	$32^3 \times 96$			
3980	40	40	41			
4005	41	41	42			
4030	42	42	43			
4055	42	43	43			
4080	43	44	45	not significant?		
4105	44	46	49			
4130	45	49	52			
4155	47	54	57	Physical m_{π}^2		
4180	50	62	89	Chiral limit: $m_{\pi}^2 = 0$		

Nvidia's Fermi GPU: 512 core x 32 floating = 16K bits

