
Case Study:
Quantum Chromodynamics

Michael Clark

Harvard University

with
R. Babich, K. Barros, R. Brower, J. Chen and C. Rebbi

Wednesday, 30 September 2009

Outline

• Primer to QCD

• QCD on a GPU

• Mixed Precision Solvers

• Multigrid solver on a GPU

• Conclusions

Wednesday, 30 September 2009

Quantum

ChromoDynamics
• QCD is the theory of the strong force that binds nucleons

• Impose local SU(3) symmetry on vacuum

• Color charge analogous to electric charge of EM

• Lagrangian of the theory very simple to write down

• Path integral formulation

• Infinite dimensional integral

• Theory is strictly non-perturbative at low energies

Introduction

• Lattice QCD path integral

〈Ω〉 =
1

Z

∫
[dU]e−Sg(U)[detM(U)]αΩ(U)

〈Ω〉 =
1

Z

∫
[dU]e−

∫
d4xL(U)Ω(U)

α =
Nf
2 (

Nf
4) for Wilson (staggered) fermions, M = M†M

• 108 − 109 degrees of freedom ⇒ Monte Carlo integration

• Interpret e−Sg detMα as a Boltzmann weight, and use
importance sampling

〈Ω〉 ≈
1

N

N∑

i=1
Ω(Ui)

3

LQCD = ψi (iγµ(Dµ)ij −mδij) ψj −Ga
µνGµν

a

Wednesday, 30 September 2009

Lattice QCD

• Only known non-perturbative method is lattice QCD

• Discretize and finitize spacetime

• 4d periodic spacetime lattice (e.g., 1284 x 3 x 4 dof)

• 108-109 dimension integral => Monte Carlo integration

• Interpret as a Boltzmann weight

• Use importance sampling

• Lattice QCD is a 2 step process

• Generate (gluon field) configurations with weight

• Calculate mean observables

• Ab initio calculation to verify QCD is theory of strong force

Introduction

• Lattice QCD path integral

〈Ω〉 =
1

Z

∫
[dU]e−Sg(U)[detM(U)]αΩ(U)

〈Ω〉 =
1

Z

∫
[dU]e−

∫
d4xL(U)Ω(U)

α =
Nf
2 (

Nf
4) for Wilson (staggered) fermions, M = M†M

• 108 − 109 degrees of freedom ⇒ Monte Carlo integration

• Interpret e−Sg detMα as a Boltzmann weight, and use
importance sampling

〈Ω〉 ≈
1

N

N∑

i=1
Ω(Ui)

3

Introduction

• Lattice QCD path integral

〈Ω〉 =
1

Z

∫
[dU]e−Sg(U)[detM(U)]αΩ(U)

〈Ω〉 =
1

Z

∫
[dU]e−

∫
d4xL(U)Ω(U)

α =
Nf
2 (

Nf
4) for Wilson (staggered) fermions, M = M†M

• 108 − 109 degrees of freedom ⇒ Monte Carlo integration

• Interpret e−Sg detMα as a Boltzmann weight, and use
importance sampling

〈Ω〉 ≈
1

N

N∑

i=1
Ω(Ui)

3

Introduction

• Lattice QCD path integral

〈Ω〉 =
1

Z

∫
[dU]e−Sg(U)[detM(U)]αΩ(U)

〈Ω〉 =
1

Z

∫
[dU]e−

∫
d4xL(U)Ω(U)

α =
Nf
2 (

Nf
4) for Wilson (staggered) fermions, M = M†M

• 108 − 109 degrees of freedom ⇒ Monte Carlo integration

• Interpret e−Sg detMα as a Boltzmann weight, and use
importance sampling

〈Ω〉 ≈
1

N

N∑

i=1
Ω(Ui)

3

Wednesday, 30 September 2009

Wednesday, 30 September 2009

Wednesday, 30 September 2009

Wednesday, 30 September 2009

Lattice QCD
• Requires Peta/Exaflops: Grand Challenge Problem

• Computation dominated by solving system of linear equations

b is the source (vector), x the solution and A a sparse NxN matrix

• In general the explicit matrix inverse is never needed

• Only interested in solution x to some precision ε

• Gaussian elimination O(N3)

• Indirect iterative solvers scale as O(N) - O(N2)

• Cost dominated by sparse matrix-vector product

• Consider Krylov methods and Multigrid on GPUs

Ax=b

Wednesday, 30 September 2009

What is A?

• From the QCD Lagrangian

LQCD = ψi (iγµ(Dµ)ij −mδij) ψj −Ga
µνGµν

a

Wednesday, 30 September 2009

Dirac operator of QCD

• The Dirac operator represent quark interactions

• Essentially a PDE with background SU(3) field

• Many discretization strategies

• Wilson discretization

• others: Overlap, staggered etc.

(Dµ)ij −mδij

Wednesday, 30 September 2009

Wilson Matrix of QCD

(Dµ)ij −mδij

Wednesday, 30 September 2009

Wilson Matrix of QCD
1
2

∑

µ

(
P−µ ⊗ Uµ

x,yδx+µ,y + P+µ ⊗ Uµ†
y,xδx−µ,y

)
+ (4 + m)δx,y

Wednesday, 30 September 2009

Wilson Matrix of QCD

• U is discretized gauge field (SU(3))

• P are Dirac spin projector matrices (4x4)

• 8 off-diagonals in spacetime, mass on diagonal

• Off-diagonals are 12x12 complex matrices

• Each point in spacetime referred to as a spinor

• 12 complex component vector

• Matrix not Hermitian but γ5-Hermitian

1
2

∑

µ

(
P−µ ⊗ Uµ

x,yδx+µ,y + P+µ ⊗ Uµ†
y,xδx−µ,y

)
+ (4 + m)δx,y

Wednesday, 30 September 2009

Wednesday, 30 September 2009

Wilson Matrix of QCD

• Quark physics requires solution Ax=b

• Krylov solvers standard method

• Condition number given by ~(quark mass)-1

• Up / down quark masses are light

• Computationally expensive

1
2

∑

µ

(
P−µ ⊗ Uµ

x,yδx+µ,y + P+µ ⊗ Uµ†
y,xδx−µ,y

)
+ (4 + m)δx,y

Wednesday, 30 September 2009

Explicit Matrix

• Possible to store matrix in explicit sparse format (CSR, etc.)

• Standard matrix-vector libraries available

• Pack your matrix, call library function, unpack

• Problem solved?

Wednesday, 30 September 2009

Bell and Garland (NVIDIA) 2008

!"!

#"!

$"!

%"!

&"!

'!"!

'#"!

'$"!

'%"!

!
"#
$
%
&'

()*+,-

()) (*+,-./01023 (*+,-45/6723 89: ;<=

(a) Without Cache

!"!

#"!

$"!

%"!

&"!

'!"!

'#"!

'$"!

'%"!

!
"#
$
%
&'

()*+,-

()) (*+,-./01023 (*+,-45/6723 89: ;<=

(b) With Cache

Figure 34: Performance results for unstructured matrices using double precision.

It is at first surprising that the HYB format does not perform well on the dense 2,000-by-2,000 matrix.
After all, this matrix is ideally suited to the ELL format underlying HYB. Recall from Section 2 that the
GTX 200-series processor supports 30K concurrently executing threads. However, the granularity of the ELL
kernel (one thread per row) implies that only 2,000 threads will be launched, significantly underutilizing the
device. For comparison, applying the HYB kernel to a dense matrix with 30K rows and 128 columns runs
at 30.83 GFLOP/s.

The CSR (vector) kernel is significantly faster than HYB on the 2,000 row dense matrix. Here the finer
granularity of the vector kernel (one warp per row), decomposes the SpMV operation into 64,000 distinct
threads of execution, which is more than sufficient to fill the device. As with the structured matrices
considered in Section 5.1, the vector kernel is sensitive to the number of nonzeros per matrix row. On the
seven examples with an average of 50 or more nonzeros per row, the vector kernel performs no worse than
12.5 GFLOP/s. Conversely, the matrices with fewer than four nonzeros per row, Epidemiology and Webbase,
contribute the worst results, at 1.3 and 1.0 GFLOP/s respectively.

Compared to the other kernels, COO performance is relatively stable across the test cases. The COO
kernel performs particularly well on the LP matrix, which proves especially challenging for the other methods.
Although LP is the only instance where COO exhibits the best performance, it is clearly a robust fallback
for pathological matrices.

The PKT method performs well on finite-element matrices and generally outperforms HYB on this class of
problems. However, HYB with caching proves to be a superior combination in all but the FEM/Accelerator
example. Therefore, in the cases considered, the texture cache is a viable alternative to explicit precaching
with shared memory.

With caching disabled, the memory bandwidth utilization of the HYB kernel (cf. Figure 32) exceeds 90
GByte/s, or 63.5% of the theoretical maximum, on several unstructured matrices. The bandwidth disparity
between structured and unstructured cases is primarily attributable to the lack of regular access to the x
vector. The texture cache mitigates this problem to a degree, improving performance by an average of 30%.

5.2.2 Double Precision

Together, our CSR and HYB kernels surpass the 10.0 GFLOP/s mark in half of the unstructured test cases
using double precision values. As shown in Figure 35, the CSR (vector) kernel achieves the highest absolute
performance at 14.2 GFLOP/s on the Dense matrix. Wind Tunnel and QCD represent best-case HYB
performance at 13.9 and 12.6 GFLOP/s respectively. Again, COO performance is stable, varying from a
minimum of 2.9 to a maximum 4.0 GFLOP/s, with most results close to the 3.3 GFLOP/s mark.

The relative performance between double and single precision performance follows the same pattern
discussed in Section 5.1.2. The median double precision HYB performance is 62.0% of the corresponding

26

Wednesday, 30 September 2009

Explicit Matrix

• Possible to store matrix in explicit sparse format (CSR, etc.)

• Standard matrix-vector libraries available

• Pack your matrix, call library function, unpack

• Problem solved?

• Ignorant of structure and symmetries of problem

• Bad for storage (double storage of U)

• Bad for memory coalescing

• Bad for memory traffic (9408 bytes per site)

• Bad for operation count (4680 flops per site)

Wednesday, 30 September 2009

GPU Operator Representation

• Much better to consider matrix as a nearest neighbor gather operation (stencil)

• Avoids double storage of matrix elements (Hermiticity)

• Repetitive structure means no explicit indexing required

• Threads must be lightweight

• Assign a single space-time point to each thread -> XYZT threads

• Must use shared memory and registers for high occupancy (256 threads)

• Can order data optimally for any given hardware

• Large reduction in storage, flops and memory traffic

• 1440 bytes per site (c.f. 9408)

• 1368 flops per site (c.f. 4680)

Wednesday, 30 September 2009

Memory Layout

• Similar reordering required for matrix elements

Spinor
(24 numbers)

Threads read
non-contiguous data

• Reorder fields for coalescing: 6x array of float4s

• Typical CPU spinor field ordering: contiguous array of 24 floats

Threads read contiguous data

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 3

1st read
2nd read
3rd read

Wednesday, 30 September 2009

 SU(3) Representation

• SU(3) matrices are all unitary complex matrices with det = 1

• 18 real numbers, but only 8 free parameters (generators)

• 12 number parameterization

• Reconstruct full matrix on the fly

• 1152 Bytes per site

• Additional 384 flops per site

a1 a2 a3

b1 b2 b3

c1 c2 c3
() c = (axb)*a1 a2 a3

b1 b2 b3()

Wednesday, 30 September 2009

Wilson Matrix-Vector Performance
Single Precision (V=243xT)

0 32 64 96 128
Temporal Extent

80

100

120

140
G

fl
o

p
s

12 reconstruct

Wednesday, 30 September 2009

 SU(3) Representation

• Minimal 8 number parameterization

• Obtain a1 and c1 from normality

• Reconstruct b2, b3, c2, c3 from SU(2) rotation

• 1024 Bytes per site

• Additional 856 flops per site

• Including 2 sqrt, 4 trigonometric, 2 divide

a1 a2 a3

b1 b2 b3

c1 c2 c3
() arg(a1) arg(c1) Re(a2) Im(a2)

 Re(a3) Im(a3) Re(b1) Im(b1))(

Wednesday, 30 September 2009

Wilson Matrix-Vector Performance
Single Precision (V=243xT)

0 32 64 96 128
Temporal Extent

80

100

120

140
G

fl
o
p
s

12 reconstruct
8 reconstruct

Wednesday, 30 September 2009

More tricks
• Can impose similarity transforms to improve sparsity

• Can globally change Dirac matrix basis

• Impose local color transformation (gauge transformation)

• SU(3) field = unit matrix in temporal direction

• Must calculate this transformation (done once only)

• 960 Bytes per site (c.f. 1440)

• In total: 33% bandwidth reduction

B. Gamma Matrix Conventions

It is conventional in lattice QCD software to use the DeGrand-Rossi basis
for the γ matrix projectors which appear in the Wilson-Dirac operator off-
diagonals. In this basis, these are given by

P±1 =

1 0 0 ±i
0 1 ±i 0
0 ∓i 1 0
∓i 0 0 1

 P±2 =

1 0 0 ∓1
0 1 ±1 0
0 ±1 1 0
∓1 0 0 1

P±3 =

1 0 ±i 0
0 1 0 ∓i
∓i 0 1 0
0 ±i 0 1

 P±4 =

1 0 ±1 0
0 1 0 ±1
±1 0 1 0

0 ±1 0 1

 .

We must always load all spinor components regardless of the dimension or
direction. An alternative basis is the UKQCD basis, in which the projectors
have the form

P±1 =

1 0 0 ±i
0 1 ±i 0
0 ∓i 1 0
∓i 0 0 1

 P±2 =

1 0 0 ±1
0 1 ∓1 0
0 ∓1 1 0
±1 0 0 1

P±3 =

1 0 ±i 0
0 1 0 ∓i
∓i 0 1 0
0 ±i 0 1

 P+4 =

2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 P−4 =

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

 .

The advantage of this approach is that in the temporal dimension we need
only load the upper (lower) spin components for the backwards (forwards)
gather. This halves the amount of bandwidth required to perform the tem-
poral gather, and so increases the kernel’s performance.

References

[1] G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Sz-
abo, “Lattice QCD as a video game,” Comput. Phys. Commun. 177
(2007) 631 [arXiv:hep-lat/0611022].

18

B. Gamma Matrix Conventions

It is conventional in lattice QCD software to use the DeGrand-Rossi basis
for the γ matrix projectors which appear in the Wilson-Dirac operator off-
diagonals. In this basis, these are given by

P±1 =

1 0 0 ±i
0 1 ±i 0
0 ∓i 1 0
∓i 0 0 1

 P±2 =

1 0 0 ∓1
0 1 ±1 0
0 ±1 1 0
∓1 0 0 1

P±3 =

1 0 ±i 0
0 1 0 ∓i
∓i 0 1 0
0 ±i 0 1

 P±4 =

1 0 ±1 0
0 1 0 ±1
±1 0 1 0

0 ±1 0 1

 .

We must always load all spinor components regardless of the dimension or
direction. An alternative basis is the UKQCD basis, in which the projectors
have the form

P±1 =

1 0 0 ±i
0 1 ±i 0
0 ∓i 1 0
∓i 0 0 1

 P±2 =

1 0 0 ±1
0 1 ∓1 0
0 ∓1 1 0
±1 0 0 1

P±3 =

1 0 ±i 0
0 1 0 ∓i
∓i 0 1 0
0 ±i 0 1

 P+4 =

2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 P−4 =

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

 .

The advantage of this approach is that in the temporal dimension we need
only load the upper (lower) spin components for the backwards (forwards)
gather. This halves the amount of bandwidth required to perform the tem-
poral gather, and so increases the kernel’s performance.

References

[1] G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Sz-
abo, “Lattice QCD as a video game,” Comput. Phys. Commun. 177
(2007) 631 [arXiv:hep-lat/0611022].

18

Wednesday, 30 September 2009

Wilson Matrix-Vector Performance
Single Precision (V=243xT)

0 32 64 96 128
Temporal Extent

80

100

120

140

G
fl

o
p
s

12 reconstruct
12 reconstruct, GF
8 reconstruct
8 reconstruct, GF

Wednesday, 30 September 2009

Wilson Matrix-Vector Performance
Single Precision (V=243xT)

0 32 64 96 128
Temporal Extent

80

100

120

140

G
fl

o
p
s

12 reconstruct
12 reconstruct, GF
8 reconstruct
8 reconstruct, GF

Irregular performance caused by
Partition Camping

Wednesday, 30 September 2009

Wilson Matrix-Vector Performance
Single Precision, padded (V=243xT)

0 32 64 96 128
Temporal Extent

80

100

120

140

G
fl

o
p
s

12 reconstruct
12 reconstruct, GF

8 reconstruct
8 reconstruct, GF

Wednesday, 30 September 2009

Double Precision

• Double precision peak ~ 78 Gflops

• Flop / Bandwidth ratio much more forgiving

• Find and replace float -> double

• Order fields using double2 primitive for coalescing

• Register and shared memory pressure an issue

• Maximum of 128 concurrent threads

• Not all tricks are useful anymore....

• Performance penalty only a factor ~3 vs. single

Wednesday, 30 September 2009

Wilson Matrix-Vector Performance
Double Precision (V = 243xT)

0 20 40 60 80 100
Temporal Extent

10

15

20

25

30

35

40

G
fl

o
p
s

12 reconstruct, GF
8 reconstruct, GF

Wednesday, 30 September 2009

Multi-GPU
• Need to scale to many GPUs

• Size of problem

• Raw flops

• Preliminary implementation

• No overlap of comms and compute

• 1 MPI process per GPU

• 90% efficiency on 4 GPUs (S1070)

• Many GPUs challenging but possible

• 1 GPU per PCIe slot

• New algorithms

Wednesday, 30 September 2009

Multi-GPU
• Need to scale to many GPUs

• Size of problem

• Raw flops

• Preliminary implementation

• No overlap of comms and compute

• 1 MPI process per GPU

• 90% efficiency on 4 GPUs (S1070)

• Many GPUs challenging but possible

• 1 GPU per PCIe slot

• New algorithms 1 2 3 4

Number of GPUs

0

0.2

0.4

0.6

0.8

1

P
ar

al
le

l
E

ff
ic

ie
n

cy

V = 8
3
128

V = 32
4

Wednesday, 30 September 2009

Krylov Solver
Implementation

• Complete solver must be on GPU

• Transfer b to GPU

• Solve Ax=b

• Transfer x to CPU

• Require BLAS level 1 type operations

• AXPY operations: b += ax

• NORM operations: c = (b,b)

• CUBLAS library available

• Better to coalesce operations to minimize bandwidth

• e.g., AXPY_NORM

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1

xk+1 = xk + αpk+1

k = k+1
}

Wednesday, 30 September 2009

0 20 40 60 80 100
Temporal Extent

80

90

100

110

120
G

flo
ps

Wilson matrix-vector
BiCGstab
CG

Performance of Dirac-Wilson Linear Equation Solver
V = 243

Wilson Inverter Performance
Single Precision (12 reconstruct, V=243xT)

Wednesday, 30 September 2009

Mixed-Precision Solvers
• Require solver tolerance beyond limit of single precision

• e.g., Use defect-correction

• Double precision can be done on CPU or GPU

• Can always check GPU gets correct answer

• Disadvantage is each new single precision solve is a restart

• Use Reliable Updates (Sleijpen and Van der Worst 1996)

while (|rk|> ε) {
rk = b - Axk

pk = A-1rk

xk+1 = xk + pk

}

Double precision
mat-vec and
accumulate

Inner single
precision solve

Wednesday, 30 September 2009

Wilson Inverter Iterations
(ε=10-8, V=323x96)

-0.42 -0.41 -0.4
mass

0

10000

20000

30000

40000

50000

60000

70000
N
it
er

Double
Single
m
crit

Increasing conditioner number

Wednesday, 30 September 2009

Wilson Inverter Time to Solution
(ε=10-8, V=323x96)

-0.42 -0.41 -0.4
mass

0

2000

4000

6000

8000

10000

T
im

e
(s

ec
o

n
d

s)
Double
Single
m

crit

Increasing conditioner number

Wednesday, 30 September 2009

Wilson Matrix-Vector Performance
Half Precision (V = 243xT)

0 32 64 96 128

Temporal Extent

120

160

200

240

G
fl

o
p

s

Single

Half

Wednesday, 30 September 2009

Wilson Inverter Iterations
(ε=10-8, V=323x96)

-0.42 -0.41 -0.4
mass

0

10000

20000

30000

40000

50000

60000

70000
N
it
er

Double
Single

Half
m
crit

Increasing conditioner number

Wednesday, 30 September 2009

Wilson Inverter Time to Solution
(ε=10-8, V=323x96)

Increasing conditioner number

-0.42 -0.41 -0.4
mass

0

2000

4000

6000

8000

10000
T

im
e

(s
ec

o
n

d
s)

Double
Single

Half
m

crit

Increasing conditioner number

Wednesday, 30 September 2009

Multigrid Solver
• Use solution on coarse grid to accelerate the solver

• Iterate this process until exact solve is possible (V-cycle)

• Multigrid methods are optimal

• O(N) scaling

• No condition number dependence

Wednesday, 30 September 2009

-0.42 -0.41 -0.4
mass

0

5000

10000

15000

20000
M

at
ri

x
-v

ec
to

r
p
ro

d
u
ct

s
CG
MG-GCR

Iterations Until convergence: MG vs CG
(ε=10-8, V=323x96)

Increasing conditioner number

Wednesday, 30 September 2009

Multigrid on a GPU
• Very difficult to obtain high performance on parallel architectures

• E.g., V=644, 3 level multigrid algorithm, 44 coarsening

• More cores than degrees of freedom

• Efficient multi-GPU impossible on the coarse grid

• Heterogenous Algorithm

Fine
Grid

Intermediate
Grid

Coarse
Grid

Volume 64 16 4

Surface /
Volume

0.125 0.5 2

4 44

4
4
 (coarse) 16

4
64

4
 (fine)

Volume

0

50

100

150

200

G
fl

o
p
s

Wednesday, 30 September 2009

Multigrid on a GPU

• Heterogenous Algorithm => Heterogenous Architecture

• Fine and intermediate grid operations performed on GPU

• Coarse grid operators performed on CPU

• GPU + CPU combination ideal for multigrid

• Mixed precision possible

• Single/Half precision for multigrid preconditioner

• Double precision for outer Krylov wrapper

CPU

GPUGPU GPUGPU
Fine Grid

Intermediate Grid

Coarse Grid

Wednesday, 30 September 2009

How Fast is
Fast?

Wednesday, 30 September 2009

Performance Per MFLOP

=

Wednesday, 30 September 2009

Performance Per Watt

=

Wednesday, 30 September 2009

Performance Per $

=

Wednesday, 30 September 2009

Conclusions
• Fantastic algorithmic performance obtained on today GPUs

• Flops per Watt

• Flops per $

• Some work required to get best performance

• Standard libraries are not an option

• Knowledge of the problem required

• Reduce memory traffic at all costs

• Algorithm design critical component

• Bandwidth constraints force complete rethink of problem

• Future work: scale to many GPUs

Wednesday, 30 September 2009

QCD on Fermi?
• Better double precision

• Factor of 2 penalty vs. single precision

• More bandwidth

• Current code will scale with bandwidth improvement

• More shared memory

• Store spinors in shared memory to reduce memory traffic

• Super-linear speedup over bandwidth

• Larger address space

• Bigger problems on a single GPU,

• ECC memory

• Deploy non-iterative code on GPU

Wednesday, 30 September 2009

