Case Study: Quantum Chromodynamics

Michael Clark

Harvard University
with
R. Babich, K. Barros, R. Brower, J. Chen and C. Rebbi

Outline

- Primer to QCD
- QCD on a GPU
- Mixed Precision Solvers
- Multigrid solver on a GPU
- Conclusions

Quantum

chromodynamics

- QCD is the theory of the strong force that binds nucleons
- Impose local $\mathrm{SU}(3)$ symmetry on vacuum
- Color charge analogous to electric charge of EM
- Lagrangian of the theory very simple to write down
$\mathcal{L}_{Q C D}=\psi_{i}\left(i \gamma^{\mu}\left(D_{\mu}\right)_{i j}-m \delta_{i j}\right) \psi_{j}-G_{\mu \nu}^{a} G_{a}^{\mu \nu}$
- Path integral formulation

$$
\langle\Omega\rangle=\frac{1}{Z} \int[d U] e^{-\int d^{4} x L(U)} \Omega(U)
$$

- Infinite dimensional integral
- Theory is strictly non-perturbative at low energies

Lattice QCD

- Only known non-perturbative method is lattice QCD
- Discretize and finitize spacetime
- 4 d periodic spacetime lattice (e.g., $128^{4} \times 3 \times 4$ dof)

- $10^{8}-10^{9}$ dimension integral $=>$ Monte Carlo integration
- Interpret $e^{-\int d^{4} x L(U)}$ as a Boltzmann weight
- Use importance sampling $\langle\Omega\rangle \approx \frac{1}{N} \sum_{i=1}^{N} \Omega\left(U_{i}\right)$
- Lattice QCD is a 2 step process
- Generate (gluon field) configurations with weight $e^{-\int d^{4} x L(U)}$
- Calculate mean observables
- Ab initio calculation to verify QCD is theory of strong force

Lattice QCD

- Requires Peta/Exaflops: Grand Challenge Problem
- Computation dominated by solving system of linear equations

$A x=b$

\mathbf{b} is the source (vector), \mathbf{x} the solution and A a sparse NxN matrix

- In general the explicit matrix inverse is never needed
- Only interested in solution x to some precision ε
- Gaussian elimination $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- Indirect iterative solvers scale as $\mathrm{O}(\mathrm{N})-\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Cost dominated by sparse matrix-vector product
- Consider Krylov methods and Multigrid on GPUs

What is A ?

- From the QCD Lagrangian

$$
\mathcal{L}_{Q C D}=\psi_{i}\left(i \gamma^{\mu}\left(D_{\mu}\right)_{i j}-m \delta_{i j}\right) \psi_{j}-G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

Dirac operator of QCD

- The Dirac operator represent quark interactions

$$
\left(D_{\mu}\right)_{i j}-m \delta_{i j}
$$

- Essentially a PDE with background $\operatorname{SU}(3)$ field
- Many discretization strategies
- Wilson discretization
- others: Overlap, staggered etc.

Wilson Matrix of QCD

$$
\left(D_{\mu}\right)_{i j}-m \delta_{i j}
$$

Wilson Matrix of QCD

$$
\frac{1}{2} \sum_{\mu}\left(P^{-\mu} \otimes U_{x, y}^{\mu} \delta_{x+\mu, y}+P^{+\mu} \otimes U_{y, x}^{\mu \dagger} \delta_{x-\mu, y}\right)+(4+m) \delta_{x, y}
$$

Wilson Matrix of QCD

$\frac{1}{2} \sum_{\mu}\left(P^{-\mu} \otimes U_{x, y}^{\mu} \delta_{x+\mu, y}+P^{+\mu} \otimes U_{y, x}^{\mu \dagger} \delta_{x-\mu, y}\right)+(4+m) \delta_{x, y}$

- U is discretized gauge field $(S U(3))$
- $\quad P$ are Dirac spin projector matrices (4×4)
- 8 off-diagonals in spacetime, mass on diagonal
- Off-diagonals are 12×12 complex matrices
- Each point in spacetime referred to as a spinor
- 12 complex component vector
- Matrix not Hermitian but Y_{5}-Hermitian

Wilson Matrix of QCD
 $\frac{1}{2} \sum_{\mu}\left(P^{-\mu} \otimes U_{x, y}^{\mu} \delta_{x+\mu, y}+P^{+\mu} \otimes U_{y, x}^{\mu \dagger} \delta_{x-\mu, y}\right)+(4+m) \delta_{x, y}$

- Quark physics requires solution $A \mathbf{x}=\mathbf{b}$
- Krylov solvers standard method
- Condition number given by $\sim(q u a r k \text { mass) })^{-1}$
- Up / down quark masses are light
- Computationally expensive

Explicit Matrix

- Possible to store matrix in explicit sparse format (CSR, etc.)
- Standard matrix-vector libraries available
- Pack your matrix, call library function, unpack
- Problem solved?

Bell and Garland (NVIDIA) 2008

Explicit Matrix

- Possible to store matrix in explicit sparse format (CSR, etc.)
- Standard matrix-vector libraries available
- Pack your matrix, call library function, unpack
- Problem solved?
- Ignorant of structure and symmetries of problem
- Bad for storage (double storage of U)
- Bad for memory coalescing
- Bad for memory traffic (9408 bytes per site)
- Bad for operation count (4680 flops per site)

GPU ODERATOR Representation

- Much better to consider matrix as a nearest neighbor gather operation (stencil)
- Avoids double storage of matrix elements (Hermiticity)
- Repetitive structure means no explicit indexing required
- Threads must be lightweight
- Assign a single space-time point to each thread -> XYZT threads
- Must use shared memory and registers for high occupancy (256 threads)
- Can order data optimally for any given hardware
- Large reduction in storage, flops and memory traffic
- I440 bytes per site (c.f. 9408)
- I368 flops per site (c.f. 4680)

Memory Layout

- Typical CPU spinor field ordering: contiguous array of 24 floats

(24 numbers)
- Reorder fields for coalescing: 6x array of float4s

Threads read contiguous data

- Similar reordering required for matrix elements

SU(3) Representation

- $\mathrm{SU}(3)$ matrices are all unitary complex matrices with det $=\mathrm{I}$
- $\quad 18$ real numbers, but only 8 free parameters (generators)
- 12 number parameterization

$$
\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) \quad \longrightarrow\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) \quad \mathbf{c}=(\mathbf{a \times b})^{*}
$$

- Reconstruct full matrix on the fly
- II52 Bytes per site
- Additional 384 flops per site

Wilson Matrix-Vector Performance
Single Precision $\left(V=24^{3} \times T\right)$

SU(3) Representation

- Minimal 8 number parameterization

- Obtain a_{l} and c_{1} from normality
- Reconstruct $b_{2}, b_{3}, c_{2}, c_{3}$ from $S U(2)$ rotation
- 1024 Bytes per site
- Additional 856 flops per site
- Including 2 sqrt, 4 trigonometric, 2 divide

Wilson Matrix-Vector Performance
Single Precision ($V=24^{3} \times T$)

More tricks

- Can impose similarity transforms to improve sparsity
- Can globally change Dirac matrix basis
$P^{ \pm 4}=\left(\begin{array}{rrrr}1 & 0 & \pm 1 & 0 \\ 0 & 1 & 0 & \pm 1 \\ \pm 1 & 0 & 1 & 0 \\ 0 & \pm 1 & 0 & 1\end{array}\right) \longrightarrow P^{+4}=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) P^{-4}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
- Impose local color transformation (gauge transformation)
- $\operatorname{SU}(3)$ field $=$ unit matrix in temporal direction
- Must calculate this transformation (done once only)
- 960 Bytes per site (c.f. I 440)
- In total: 33\% bandwidth reduction

Wilson Matrix-Vector Performance
Single Precision ($V=24^{3} \times T$)

Wilson Matrix-Vector Performance
Single Precision ($V=24^{3} \times T$)

Wilson Matrix-Vector Performance
Single Precision, padded ($V=24^{3} \times T$)

Double Precision

- Double precision peak ~ 78 Gflops
- Flop / Bandwidth ratio much more forgiving
- Find and replace float -> double
- Order fields using double2 primitive for coalescing
- Register and shared memory pressure an issue
- Maximum of 128 concurrent threads
- Not all tricks are useful anymore....
- Performance penalty only a factor ~ 3 vs. single

Wilson Matrix-Vector Performance

Double Precision ($V=24^{3} \times \mathrm{T}$)

Multi-GPU

- Need to scale to many GPUs
- Size of problem
- Raw flops
- Preliminary implementation

- No overlap of comms and compute
- I MPI process per GPU
- 90% efficiency on 4 GPUs (SI070)
- Many GPUs challenging but possible
- I GPU per PCle slot
- New algorithms

Multi-GPU

- Need to scale to many GPUs
- Size of problem
- Raw flops
- Preliminary implementation

- New algorithms

Krylov Solver Implementation

- Complete solver must be on GPU
- Transfer b to GPU
- Solve $A \mathbf{x}=\mathbf{b}$
- Transfer \mathbf{x} to CPU
- Require BLAS level I type operations
- AXPY operations: $\mathbf{b}+=\mathbf{a x}$
- NORM operations: c = (b,b)

$$
\begin{aligned}
& \text { while }\left(\left|r_{k}\right|>\varepsilon\right)\{ \\
& \beta_{\mathrm{k}}=\left(\mathbf{r}_{\mathrm{k}}, \mathbf{r}_{\mathrm{k}}\right) /\left(\mathbf{r}_{\mathrm{k}-1}, \mathbf{r}_{\mathrm{k}-1}\right) \\
& \mathbf{p}_{\mathrm{k}+1}=\mathbf{r}_{\mathrm{k}}-\beta_{\mathrm{k}} \mathbf{p}_{\mathrm{k}} \\
& \alpha=\left(\mathbf{r}_{k}, \mathbf{r}_{\mathrm{k}}\right) /\left(\mathbf{p}_{\mathrm{k}+\mathrm{l}}, \mathrm{~A} \mathbf{p}_{\mathrm{k}+\mathrm{l}}\right) \\
& \mathbf{r}_{\mathrm{k}+1}=\mathbf{r}_{\mathrm{k}}-\alpha \mathrm{A} \mathbf{p}_{\mathrm{k}+1} \\
& \mathbf{x}_{\mathrm{k}+1}=\mathbf{x}_{\mathrm{k}}+\alpha \mathbf{p}_{\mathrm{k}+1} \\
& \mathrm{k}=\mathrm{k}+\mathrm{l}
\end{aligned}
$$

- CUBLAS library available
- Better to coalesce operations to minimize bandwidth
- e.g.,AXPY_NORM

Wilson Inverter Performance
Single Precision (12 reconstruct, V $=24^{3} \times \mathrm{T}$)

Mixed-Precision Solvers

- Require solver tolerance beyond limit of single precision
- e.g., Use defect-correction

- Double precision can be done on CPU or GPU
- Can always check GPU gets correct answer
- Disadvantage is each new single precision solve is a restart
- Use Reliable Updates (Sleijpen andVan der Worst I996)

Wilson Inverter Iterations
$\left(\varepsilon=10^{-8}, V=32^{3} \times 96\right)$

Wilson Inverter Time to Solution

$$
\left(\varepsilon=10^{-8}, V=32^{3} \times 96\right)
$$

Wilson Matrix-Vector Performance
Half Precision ($V=24^{3} \times T$)

Wilson Inverter Iterations

$$
\left(\varepsilon=10^{-8}, V=32^{3} \times 96\right)
$$

Wilson Inverter Time to Solution

$$
\left(\varepsilon=10^{-8}, V=32^{3} \times 96\right)
$$

Multigrid Solver

- Use solution on coarse grid to accelerate the solver

- Iterate this process until exact solve is possible (V-cycle)
- Multigrid methods are optimal
- $\mathrm{O}(\mathrm{N})$ scaling
- No condition number dependence

$$
\left(\varepsilon=10^{-8}, V=32^{3} \times 96\right)
$$

- Very difficult to obtain high performance on parallel architectures
- E.g., $\mathrm{V}=64^{4}, 3$ level multigrid algorithm, 4^{4} coarsening

	Fine Grid	Intermediate Grid	Coarse Grid
Volume	64^{4}	16^{4}	4^{4}
Surface / Volume	0.125	0.5	2

- More cores than degrees of freedom
- Efficient multi-GPU impossible on the coarse grid
- Heterogenous Algorithm

Multigrid on a GPU

- Heterogenous Algorithm => Heterogenous Architecture
- Fine and intermediate grid operations performed on GPU
- Coarse grid operators performed on CPU
- GPU + CPU combination ideal for multigrid
- Mixed precision possible
- Single/Half precision for multigrid preconditioner
- Double precision for outer Krylov wrapper

How Fast is FAST?

Performance Per MFLOP

Performance Per Watt

Performance Per \$

 AB AB AR AB EAB AB EAB AB A AR AR AR ARA AR AR

Conclusions

- Fantastic algorithmic performance obtained on today GPUs
- Flops perWatt
- Flops per \$
- Some work required to get best performance
- Standard libraries are not an option
- Knowledge of the problem required
- Reduce memory traffic at all costs
- Algorithm design critical component
- Bandwidth constraints force complete rethink of problem
- Future work: scale to many GPUs

QCD on Fermi?

- Better double precision
- Factor of 2 penalty vs. single precision
- More bandwidth
- Current code will scale with bandwidth improvement
- More shared memory
- Store spinors in shared memory to reduce memory traffic
- Super-linear speedup over bandwidth
- Larger address space
- Bigger problems on a single GPU,
- ECC memory
- Deploy non-iterative code on GPU

