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o ouantum
hromoDynamics

® QCD is the theory of the strong force that binds nucleons
® |mpose local SU(3) symmetry on vacuum

® Color charge analogous to electric charge of EM
® |agrangian of the theory very simple to write down

Loop = i (V" (Dy)iz —mdij) b — G, Go"
® Path integral formulation

(2) = % / [dU]e~ ] =L Q)

® |Infinite dimensional integral

® Theory is strictly non-perturbative at low energies
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/ Lattice QCD

® Only known non-perturbative method is lattice QCD

® Discretize and finitize spacetime

® 4d periodic spacetime lattice (e.g., [28* x 3 x 4 dof)
® |08-10° dimension integral => Monte Carlo integration
® |[nterpret ¢ Jd*zL(U) 45 3 Boltzmann weight

® Use importance sampling () ~ ~ Z Q(U;)

® lattice QCD is a 2 step process

xL(U)

4
® Generate (gluon field) configurations with weight e Jd
® (Calculate mean observables

® Ab initio calculation to verify QCD is theory of strong force
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Lattice OCD

® Requires Peta/Exaflops: Grand Challenge Problem
® Computation dominated by solving system of linear equations
AX=b
b is the source (vector), X the solution and A a sparse NxN matrix
® |n general the explicit matrix inverse is never needed
® Only interested in solution x to some precision €
®  Gaussian elimination O(N?3)
® Indirect iterative solvers scale as O(N) - O(N?)
® Cost dominated by sparse matrix-vector product

® Consider Krylov methods and Multigrid on GPUs
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What is A!

® From the QCD Lagrangian

Locp = i (7" (Dp)ij — moij) ¥y — GZVGZW
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Dirac operator of OCD

® The Dirac operator represent quark interactions

(Dy)ig — mdij

® Essentially a PDE with background SU(3) field
® Many discretization strategies
® Wilson discretization

® others: Overlap, staggered etc.
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Wilson Matrix of OCD

(Dy)ij — mdyj
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Wilson Matrix of OcD

1
2 Z (P_“ & Ug,yéaﬂru,y + P ® Uﬁldw—“vy) T (4 T m)(Sx,y
3
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Wilson Matrix of OcD

1
2 Z (P_M & Uapzt,yéaﬂru,y + P ® Uﬁldw—“vy) T (4 T m)(Sa;,y
3

® U is discretized gauge field (SU(3))

® Pare Dirac spin projector matrices (4x4)

® 8 off-diagonals in spacetime, mass on diagonal
e Off-diagonals are 12x12 complex matrices

® FEach point in spacetime referred to as a spinor

® |2 complex component vector

® Matrix not Hermitian but Yys-Hermitian
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Wilson Matrix of OCD
3 (P O U+ PP UL ) + (4

® Quark physics requires solution Ax=b

® Krylov solvers standard method

e Condition number given by ~(quark mass)-!
® Up / down quark masses are light

e Computationally expensive
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Explicit Matrix

® Possible to store matrix in explicit sparse format (CSR, etc.)
® Standard matrix-vector libraries available
® Pack your matrix, call library function, unpack

® Problem solved?
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Explicit Matrix

® Possible to store matrix in explicit sparse format (CSR, etc.)
® Standard matrix-vector libraries available

® Pack your matrix, call library function, unpack

® Problem solved!?
® |gnorant of structure and symmetries of problem

® Bad for storage (double storage of U)

® Bad for memory coalescing

® Bad for memory traffic (9408 bytes per site)

® Bad for operation count (4680 flops per site)
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GPU Operator Representation

® Much better to consider matrix as a nearest neighbor gather operation (stencil)
® Avoids double storage of matrix elements (Hermiticity)
® Repetitive structure means no explicit indexing required
® Threads must be lightweight
® Assign a single space-time point to each thread -> XYZT threads
® Must use shared memory and registers for high occupancy (256 threads)
® Can order data optimally for any given hardware
® Large reduction in storage, flops and memory traffic
® [440 bytes per site (c.f. 9408)

® |368 flops per site (c.f. 4680)
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Memory Layout

® Typical CPU spinor field ordering: contiguous array of 24 floats

t
Threads read Isdread

: n
non-contiguous data 2" read

/ l \ I 3" read

1

Spinor
(24 numbers)

® Reorder fields for coalescing: 6x array of float4s

414

Threads read contiguous data

® Similar reordering required for matrix elements
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SU(3) Representation

® SU(3) matrices are all unitary complex matrices with det = |
® |8 real numbers, but only 8 free parameters (generators)

® |2 number parameterization

b by bs = b1 by b c = (axb)*
C| C2 C3

® Reconstruct full matrix on the fly
® | |52 Bytes per site

® Additional 384 flops per site
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SU(3) Representation

® Minimal 8 number parameterization

d| 42 a3
arg(ai) arg(ci) Re(az) Im(az)
(b| b2 b3) — ( Re(al;;) Im(a3|) Re(blz) Im(bT) )

C|I C2C3

® Obtain a; and ¢| from normality

® Reconstruct by, bz, ¢z, c3 from SU(2) rotation
e |024 Bytes per site
® Additional 856 flops per site

® |ncluding 2 sqrt, 4 trigonometric, 2 divide
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More tricks

® Can impose similarity transforms to improve sparsity

® (Can globally change Dirac matrix basis

1 0 x1 O 2 0 0 0 0 0
0 1 0 =+£1 0 2 0 0 0 0

4 _* 14 —4
P = +1 0 1 0 P = 00 00 P = 0 0
0 1 0 1 0 0 00 0 0

® [mpose local color transformation (gauge transformation)
® SU(3) field = unit matrix in temporal direction
® Must calculate this transformation (done once only)

® 960 Bytes per site (c.f. 1440)

® |n total: 33% bandwidth reduction

o v O O

O O O O
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Double Precision

® Double precision peak ~ 78 Gflops
® Flop / Bandwidth ratio much more forgiving
® Find and replace float -> double
® Order fields using double? primitive for coalescing
® Register and shared memory pressure an issue
® Maximum of 128 concurrent threads
® Not all tricks are useful anymore....

® Performance penalty only a factor ~3 vs. single
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Multi-GPU

® Need to scale to many GPUs
® Size of problem

® Raw flops

® Preliminary implementation
® No overlap of comms and compute
® | MPI process per GPU
® 90% efficiency on 4 GPUs (S1070)
® Many GPUs challenging but possible

® | GPU per PCle slot

® New algorithms

Wednesday, 30 September 2009



Multi-GPU

® Need to scale to many GPUs
® Size of problem

® Raw flops

® Preliminary implementation

® No overlap of comms and compute pr—— | |
NN elIIIoo-- =
® | MPI process per GPU sk T TTTTemm—— °
® 90% efficiency on 4 GPUs (S1070) §0-6—
i3
® Many GPUs challenging but possible %0"“
: sl O\ -3’23
® | GPU per PCle slot | -y -3
® New algorithms 0 1 h%umber of GPGS '
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Krylov Solver
Implementation

® Complete solver must be on GPU
while (|ri]> €) {

Bk = (FioF)/(Fi-1,Fk-1)
¢ Solve Ax=b P+l = Fi - Brpx

® Transfer b to GPU

® Transfer x to CPU
X = (I"k, r|<)/(p|<+ | ,APk+ I)

® Require BLAS level | type operations Fickl = P - XAPK+
Xi+1 = Xk T XPk+l
® AXPY operations: b += ax k = k+]|
® NORM operations: c = (b,b) j

e CUBLAS library available

® Better to coalesce operations to minimize bandwidth

¢ cg,AXPY _NORM
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Mixed-Precision Solvers

® Require solver tolerance beyond limit of single precision

® e.g,Use defect-correction

while (Jri|> €) {

Double precision P F=b -Ax

mat-vec and P« = Al G — Inner single

accumulate \ Xi+] = X + P« precision solve

® Double precision can be done on CPU or GPU
® Can always check GPU gets correct answer

® Disadvantage is each new single precision solve is a restart

® Use Reliable Updates (Sleijpen and Van der Worst 1996)
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Multigrid Solver

Use solution on coarse grid to accelerate the solver

Relax .

Restrct

Relax .

3 . /W
Restrict

Solve

. Relax

Promote

. Relax

Promote

Iterate this process until exact solve is possible (V-cycle)

Multigrid methods are optimal
°

O(N) scaling

® No condition number dependence
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Multigrid on a GPU

® \Very difficult to obtain high performance on parallel architectures

® E.g,V=64%3 level multigrid algorithm, 4* coarsening

200
Fine Intermediate CO&I"SG
Gl’id GI”Id Gl’ld 150 -
4 4 4
Volume 64 |6 4
Surface /
0.125 0.5 2
Volume .
4" (coarse) 16" 64" (fine)
Volume

® More cores than degrees of freedom
® Efficient multi-GPU impossible on the coarse grid

® Heterogenous Algorithm
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Multigrid on a GPU

Fine Grid

Intermediate Grid

|
Coarse Grid

-

® Heterogenous Algorithm => Heterogenous Architecture

GPU

GPU

GPU

GPU

W

CPU

® Fine and intermediate grid operations performed on GPU

® Coarse grid operators performed on CPU

e GPU + CPU combination ideal for multigrid

® Mixed precision possible

e Single/Half precision for multigrid preconditioner

® Double precision for outer Krylov wrapper
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How FAST IS
FAST?
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Performance Per MFLOP
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Performance Per Watt
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Performance Per $

Ll LR L Lol Lol [Lh LR
Lol LRl Ml Lol Lol SLb Lk
Ll AL LR LRl RS LR LS
LEB LER LB LD LD LLR LR
oSN = = = S = S S =
oSN = = = S = S =
oSN = S = G S =Y S S =
R Sl Lol ST SR LS LR
R Ll Lol MR SR LS LR
R Ll Lo MR, Sl LS LR
JISEN SIS S=NYFS= S~ S=N
Ll LRl Ml el Lol [Lh LR
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R e Lo Ll Lah LS LaR
LR Ll LR LR Lah LLS LaR
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Conclusions

® Fantastic algorithmic performance obtained on today GPUs
® Flops per Watt
® Flops per $
® Some work required to get best performance
® Standard libraries are not an option
® Knowledge of the problem required
® Reduce memory traffic at all costs
® Algorithm design critical component
® Bandwidth constraints force complete rethink of problem

® Future work: scale to many GPUs
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QCD on Fermi!?

® Better double precision
® Factor of 2 penalty vs. single precision
® More bandwidth
® Current code will scale with bandwidth improvement
® More shared memory
® Store spinors in shared memory to reduce memory traffic
® Super-linear speedup over bandwidth
® |arger address space
® Bigger problems on a single GPU,
e ECC memory

® Deploy non-iterative code on GPU
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