Case Study: Quantum Chromodynamics

Michael Clark

Harvard University

with R. Babich, K. Barros, R. Brower, J. Chen and C. Rebbi

Outline

- Primer to QCD
- QCD on a GPU
- Mixed Precision Solvers
- Multigrid solver on a GPU
- Conclusions

Quantum

ChromoDynamics

- QCD is the theory of the strong force that binds nucleons
- Impose local SU(3) symmetry on vacuum
 - Color charge analogous to electric charge of EM
- Lagrangian of the theory very simple to write down $\mathcal{L}_{QCD} = \psi_i \left(i \gamma^{\mu} (D_{\mu})_{ij} - m \delta_{ij} \right) \psi_j - G^a_{\mu\nu} G^{\mu\nu}_a$
- Path integral formulation

$$\langle \Omega \rangle = \frac{1}{Z} \int [dU] e^{-\int d^4 x L(U)} \Omega(U)$$

- Infinite dimensional integral
- Theory is strictly non-perturbative at low energies

Lattice QCD

- Only known non-perturbative method is lattice QCD
 - Discretize and finitize spacetime
 - 4d periodic spacetime lattice (e.g., 128⁴ x 3 x 4 dof)
- I0⁸-I0⁹ dimension integral => Monte Carlo integration
- Interpret $e^{-\int d^4x L(U)}$ as a Boltzmann weight
 - Use importance sampling $\langle \Omega \rangle \approx \frac{1}{N} \sum_{i=1}^{N} \Omega(U_i)$
- Lattice QCD is a 2 step process
 - Generate (gluon field) configurations with weight $e^{-\int d^4x L(U)}$
 - Calculate mean observables
- Ab initio calculation to verify QCD is theory of strong force

Lattice QCD

- Requires Peta/Exaflops: Grand Challenge Problem
- Computation dominated by solving system of linear equations

A**x=b**

b is the source (vector), **x** the solution and A a sparse NxN matrix

- In general the explicit matrix inverse is never needed
 - Only interested in solution x to some precision &
- Gaussian elimination $O(N^3)$
- Indirect iterative solvers scale as O(N) O(N²)
 - Cost dominated by sparse matrix-vector product
- Consider Krylov methods and Multigrid on GPUs

What is A?

• From the QCD Lagrangian

$$\mathcal{L}_{QCD} = \psi_i \left(i \gamma^\mu (D_\mu)_{ij} - m \delta_{ij} \right) \psi_j - G^a_{\mu\nu} G^{\mu\nu}_a$$

Dirac operator of QCD

• The Dirac operator represent quark interactions

 $(D_{\mu})_{ij} - m\delta_{ij}$

- Essentially a PDE with background SU(3) field
- Many discretization strategies
 - Wilson discretization
 - others: Overlap, staggered etc.

 $(D_{\mu})_{ij} - m\delta_{ij}$

 $\frac{1}{2}\sum_{\mu} \left(P^{-\mu} \otimes U^{\mu}_{x,y} \delta_{x+\mu,y} + P^{+\mu} \otimes U^{\mu\dagger}_{y,x} \delta_{x-\mu,y} \right) + (4+m)\delta_{x,y}$

$$\frac{1}{2}\sum_{\mu} \left(P^{-\mu} \otimes U^{\mu}_{x,y} \delta_{x+\mu,y} + P^{+\mu} \otimes U^{\mu\dagger}_{y,x} \delta_{x-\mu,y} \right) + (4+m)\delta_{x,y}$$

- U is discretized gauge field (SU(3))
- *P* are Dirac spin projector matrices (4x4)
- 8 off-diagonals in spacetime, mass on diagonal
 - Off-diagonals are 12x12 complex matrices
- Each point in spacetime referred to as a spinor
 - 12 complex component vector
- Matrix not Hermitian but γ₅-Hermitian

$$\frac{1}{2}\sum_{\mu} \left(P^{-\mu} \otimes U^{\mu}_{x,y} \delta_{x+\mu,y} + P^{+\mu} \otimes U^{\mu\dagger}_{y,x} \delta_{x-\mu,y} \right) + (4+m)\delta_{x,y}$$

- Quark physics requires solution Ax=b
- Krylov solvers standard method
- Condition number given by ~(quark mass)⁻¹
 - Up / down quark masses are light
 - Computationally expensive

Explicit Matrix

- Possible to store matrix in explicit sparse format (CSR, etc.)
- Standard matrix-vector libraries available
 - Pack your matrix, call library function, unpack
 - Problem solved?

Bell and Garland (NVIDIA) 2008

Explicit Matrix

- Possible to store matrix in explicit sparse format (CSR, etc.)
- Standard matrix-vector libraries available
 - Pack your matrix, call library function, unpack
 - Problem solved?
- Ignorant of structure and symmetries of problem
 - Bad for storage (double storage of U)
 - Bad for memory coalescing
 - Bad for memory traffic (9408 bytes per site)
 - Bad for operation count (4680 flops per site)

GPU Operator Representation

- Much better to consider matrix as a nearest neighbor gather operation (stencil)
 - Avoids double storage of matrix elements (Hermiticity)
 - Repetitive structure means no explicit indexing required
- Threads must be lightweight
 - Assign a single space-time point to each thread -> XYZT threads
 - Must use shared memory and registers for high occupancy (256 threads)
- Can order data optimally for any given hardware
- Large reduction in storage, flops and memory traffic
 - 1440 bytes per site (c.f. 9408)
 - 1368 flops per site (c.f. 4680)

Memory Layout

• Typical CPU spinor field ordering: contiguous array of 24 floats

- (24 numbers)
 - Reorder fields for coalescing: 6x array of float4s

• Similar reordering required for matrix elements

SU(3) Representation

- SU(3) matrices are all unitary complex matrices with det = I
 - 18 real numbers, but only 8 free parameters (generators)
- 12 number parameterization

- Reconstruct full matrix on the fly
- **II52** Bytes per site
- Additional 384 flops per site

SU(3) Representation

• Minimal 8 number parameterization

- Obtain a₁ and c₁ from normality
- Reconstruct b₂, b₃, c₂, c₃ from SU(2) rotation
- 1024 Bytes per site
- Additional 856 flops per site
 - Including 2 sqrt, 4 trigonometric, 2 divide

More tricks

- Can impose similarity transforms to improve sparsity
- Can globally change Dirac matrix basis

- Impose local color transformation (gauge transformation)
 - SU(3) field = unit matrix in temporal direction
 - Must calculate this transformation (done once only)
- 960 Bytes per site (c.f. 1440)
- In total: 33% bandwidth reduction

Double Precision

- Double precision peak ~ 78 Gflops
 - Flop / Bandwidth ratio much more forgiving
- Find and replace float -> double
 - Order fields using double2 primitive for coalescing
- Register and shared memory pressure an issue
 - Maximum of 128 concurrent threads
- Not all tricks are useful anymore....
- Performance penalty only a factor ~3 vs. single

Multi-GPU

- Need to scale to many GPUs
 - Size of problem
 - Raw flops
- Preliminary implementation
 - No overlap of comms and compute
 - I MPI process per GPU
 - 90% efficiency on 4 GPUs (S1070)
- Many GPUs challenging but possible
 - I GPU per PCIe slot
 - New algorithms

Multi-GPU

- Need to scale to many GPUs
 - Size of problem
 - Raw flops
- Preliminary implementation
 - No overlap of comms and compute
 - I MPI process per GPU
 - 90% efficiency on 4 GPUs (S1070)
- Many GPUs challenging but possible
 - I GPU per PCIe slot
 - New algorithms

Krylov Solver Implementation

- Complete solver must be on GPU
 - Transfer **b** to GPU
 - Solve A**x=b**
 - Transfer **x** to CPU
- Require BLAS level 1 type operations
 - AXPY operations: $\mathbf{b} += a\mathbf{x}$
 - NORM operations: c = (b,b)
- CUBLAS library available
- Better to coalesce operations to minimize bandwidth
 - e.g., AXPY_NORM

```
while (|\mathbf{r}_{k}| \geq \varepsilon) \{

\beta_{k} = (\mathbf{r}_{k}, \mathbf{r}_{k})/(\mathbf{r}_{k-1}, \mathbf{r}_{k-1})

\mathbf{p}_{k+1} = \mathbf{r}_{k} - \beta_{k}\mathbf{p}_{k}

\alpha = (\mathbf{r}_{k}, \mathbf{r}_{k})/(\mathbf{p}_{k+1}, A\mathbf{p}_{k+1})

\mathbf{r}_{k+1} = \mathbf{r}_{k} - \alpha A\mathbf{p}_{k+1}

\mathbf{x}_{k+1} = \mathbf{x}_{k} + \alpha \mathbf{p}_{k+1}

k = k+1

}
```


Mixed-Precision Solvers

- Require solver tolerance beyond limit of single precision
- e.g., Use defect-correction

- Double precision can be done on CPU or GPU
 - Can always check GPU gets correct answer
- Disadvantage is each new single precision solve is a restart
 - Use Reliable Updates (Sleijpen and Van der Worst 1996)

Multigrid Solver

• Use solution on coarse grid to accelerate the solver

- Iterate this process until exact solve is possible (V-cycle)
- Multigrid methods are optimal
 - O(N) scaling
 - No condition number dependence

Multigrid on a GPU

- Very difficult to obtain high performance on parallel architectures
- E.g., V=64⁴, 3 level multigrid algorithm, 4⁴ coarsening

	Fine Grid	Intermediate Grid	Coarse Grid
Volume	64 ⁴	164	4 ⁴
Surface / Volume	0.125	0.5	2

- More cores than degrees of freedom
- Efficient multi-GPU impossible on the coarse grid
- Heterogenous Algorithm

- Heterogenous Algorithm => Heterogenous Architecture
 - Fine and intermediate grid operations performed on GPU
 - Coarse grid operators performed on CPU
 - GPU + CPU combination ideal for multigrid
- Mixed precision possible
 - Single/Half precision for multigrid preconditioner
 - Double precision for outer Krylov wrapper

HOW FAST IS FAST?

Performance Per MFLOP

Performance Per Watt

Performance Per \$

Conclusions

- Fantastic algorithmic performance obtained on today GPUs
 - Flops per Watt
 - Flops per \$
- Some work required to get best performance
 - Standard libraries are not an option
 - Knowledge of the problem required
 - Reduce memory traffic at all costs
- Algorithm design critical component
 - Bandwidth constraints force complete rethink of problem
- Future work: scale to many GPUs

QCD on Fermi?

- Better double precision
 - Factor of 2 penalty vs. single precision
- More bandwidth
 - Current code will scale with bandwidth improvement
- More shared memory
 - Store spinors in shared memory to reduce memory traffic
 - Super-linear speedup over bandwidth
- Larger address space
 - Bigger problems on a single GPU,
- ECC memory
 - Deploy non-iterative code on GPU