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Quantum 

ChromoDynamics
• QCD is the theory of the strong force that binds nucleons

• Impose local SU(3) symmetry on vacuum

• Color charge analogous to electric charge of EM

• Lagrangian of the theory very simple to write down

• Path integral formulation 

• Infinite dimensional integral

• Theory is strictly non-perturbative at low energies

Introduction

• Lattice QCD path integral

〈Ω〉 =
1

Z

∫
[dU ]e−Sg(U)[detM(U)]αΩ(U)

〈Ω〉 =
1

Z

∫
[dU ]e−

∫
d4xL(U)Ω(U)

α =
Nf
2 (

Nf
4 ) for Wilson (staggered) fermions, M = M†M

• 108 − 109 degrees of freedom ⇒ Monte Carlo integration

• Interpret e−Sg detMα as a Boltzmann weight, and use
importance sampling

〈Ω〉 ≈
1

N

N∑

i=1
Ω(Ui)

3

LQCD = ψi (iγµ(Dµ)ij −mδij) ψj −Ga
µνGµν

a
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Lattice QCD

• Only known non-perturbative method is lattice QCD

• Discretize and finitize spacetime

• 4d periodic spacetime lattice (e.g., 1284  x 3 x 4 dof)

• 108-109 dimension integral => Monte Carlo integration

• Interpret                           as a Boltzmann weight

• Use importance sampling

• Lattice QCD is a 2 step process

• Generate (gluon field) configurations with weight 

• Calculate mean observables

• Ab initio calculation to verify QCD is theory of strong force
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Lattice QCD
• Requires Peta/Exaflops: Grand Challenge Problem

• Computation dominated by solving system of linear equations

b is the source (vector), x the solution and A a sparse NxN matrix

• In general the explicit matrix inverse is never needed

• Only interested in solution x to some precision ε

• Gaussian elimination O(N3)

• Indirect iterative solvers scale as O(N) - O(N2)

• Cost dominated by sparse matrix-vector product

• Consider Krylov methods and Multigrid on GPUs

Ax=b
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What is A?

• From the QCD Lagrangian

LQCD = ψi (iγµ(Dµ)ij −mδij) ψj −Ga
µνGµν

a
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Dirac operator of QCD

• The Dirac operator represent quark interactions

• Essentially a PDE with background SU(3) field

• Many discretization strategies

• Wilson discretization

• others: Overlap, staggered etc.

(Dµ)ij −mδij
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Wilson Matrix of QCD

(Dµ)ij −mδij
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Wilson Matrix of QCD
1
2

∑

µ

(
P−µ ⊗ Uµ

x,yδx+µ,y + P+µ ⊗ Uµ†
y,xδx−µ,y

)
+ (4 + m)δx,y
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Wilson Matrix of QCD

• U is discretized gauge field (SU(3))

• P are Dirac spin projector matrices (4x4) 

• 8 off-diagonals in spacetime, mass on diagonal

• Off-diagonals are 12x12 complex matrices

• Each point in spacetime referred to as a spinor

• 12 complex component vector

• Matrix not Hermitian but γ5-Hermitian

1
2

∑

µ

(
P−µ ⊗ Uµ

x,yδx+µ,y + P+µ ⊗ Uµ†
y,xδx−µ,y

)
+ (4 + m)δx,y

Wednesday, 30 September 2009



Wednesday, 30 September 2009



Wilson Matrix of QCD

• Quark physics requires solution Ax=b

• Krylov solvers standard method

• Condition number given by ~(quark mass)-1

• Up / down quark masses are light

• Computationally expensive

1
2

∑

µ

(
P−µ ⊗ Uµ

x,yδx+µ,y + P+µ ⊗ Uµ†
y,xδx−µ,y

)
+ (4 + m)δx,y
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Explicit Matrix 

• Possible to store matrix in explicit sparse format (CSR, etc.)

• Standard matrix-vector libraries available

• Pack your matrix, call library function, unpack

• Problem solved?
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Bell and Garland (NVIDIA) 2008
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Figure 34: Performance results for unstructured matrices using double precision.

It is at first surprising that the HYB format does not perform well on the dense 2,000-by-2,000 matrix.
After all, this matrix is ideally suited to the ELL format underlying HYB. Recall from Section 2 that the
GTX 200-series processor supports 30K concurrently executing threads. However, the granularity of the ELL
kernel (one thread per row) implies that only 2,000 threads will be launched, significantly underutilizing the
device. For comparison, applying the HYB kernel to a dense matrix with 30K rows and 128 columns runs
at 30.83 GFLOP/s.

The CSR (vector) kernel is significantly faster than HYB on the 2,000 row dense matrix. Here the finer
granularity of the vector kernel (one warp per row), decomposes the SpMV operation into 64,000 distinct
threads of execution, which is more than sufficient to fill the device. As with the structured matrices
considered in Section 5.1, the vector kernel is sensitive to the number of nonzeros per matrix row. On the
seven examples with an average of 50 or more nonzeros per row, the vector kernel performs no worse than
12.5 GFLOP/s. Conversely, the matrices with fewer than four nonzeros per row, Epidemiology and Webbase,
contribute the worst results, at 1.3 and 1.0 GFLOP/s respectively.

Compared to the other kernels, COO performance is relatively stable across the test cases. The COO
kernel performs particularly well on the LP matrix, which proves especially challenging for the other methods.
Although LP is the only instance where COO exhibits the best performance, it is clearly a robust fallback
for pathological matrices.

The PKT method performs well on finite-element matrices and generally outperforms HYB on this class of
problems. However, HYB with caching proves to be a superior combination in all but the FEM/Accelerator
example. Therefore, in the cases considered, the texture cache is a viable alternative to explicit precaching
with shared memory.

With caching disabled, the memory bandwidth utilization of the HYB kernel (cf. Figure 32) exceeds 90
GByte/s, or 63.5% of the theoretical maximum, on several unstructured matrices. The bandwidth disparity
between structured and unstructured cases is primarily attributable to the lack of regular access to the x
vector. The texture cache mitigates this problem to a degree, improving performance by an average of 30%.

5.2.2 Double Precision

Together, our CSR and HYB kernels surpass the 10.0 GFLOP/s mark in half of the unstructured test cases
using double precision values. As shown in Figure 35, the CSR (vector) kernel achieves the highest absolute
performance at 14.2 GFLOP/s on the Dense matrix. Wind Tunnel and QCD represent best-case HYB
performance at 13.9 and 12.6 GFLOP/s respectively. Again, COO performance is stable, varying from a
minimum of 2.9 to a maximum 4.0 GFLOP/s, with most results close to the 3.3 GFLOP/s mark.

The relative performance between double and single precision performance follows the same pattern
discussed in Section 5.1.2. The median double precision HYB performance is 62.0% of the corresponding

26
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Explicit Matrix 

• Possible to store matrix in explicit sparse format (CSR, etc.)

• Standard matrix-vector libraries available

• Pack your matrix, call library function, unpack

• Problem solved?

• Ignorant of structure and symmetries of problem

• Bad for storage (double storage of U)

• Bad for memory coalescing

• Bad for memory traffic (9408 bytes per site)

• Bad for operation count (4680 flops per site)

Wednesday, 30 September 2009



GPU Operator Representation

• Much better to consider matrix as a nearest neighbor gather operation (stencil)

• Avoids double storage of matrix elements (Hermiticity)

• Repetitive structure means no explicit indexing required

• Threads must be lightweight

• Assign a single space-time point to each thread -> XYZT threads

• Must use shared memory and registers for high occupancy (256 threads)

• Can order data optimally for any given hardware

• Large reduction in storage, flops and memory traffic 

• 1440 bytes per site (c.f. 9408)

• 1368 flops per site (c.f. 4680)
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Memory Layout

• Similar reordering required for matrix elements

Spinor
(24 numbers)

Threads read 
non-contiguous data

• Reorder fields for coalescing: 6x array of float4s

• Typical CPU spinor field ordering: contiguous array of 24 floats

Threads read contiguous data

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 3

1st read
2nd read
3rd read
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 SU(3) Representation

• SU(3) matrices are all unitary complex matrices with det = 1

• 18 real numbers, but only 8 free parameters (generators)

• 12 number parameterization

• Reconstruct full matrix on the fly

• 1152 Bytes per site

• Additional 384 flops per site

a1 a2 a3

b1 b2 b3

c1 c2 c3
( ) c = (axb)*a1 a2 a3

b1 b2 b3( )
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Wilson Matrix-Vector Performance
Single Precision (V=243xT)
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 SU(3) Representation

• Minimal 8 number parameterization

• Obtain a1 and c1 from normality

• Reconstruct b2, b3, c2, c3 from SU(2) rotation

• 1024 Bytes per site

• Additional 856 flops per site 

• Including 2 sqrt, 4 trigonometric, 2 divide

a1 a2 a3

b1 b2 b3

c1 c2 c3
( ) arg(a1) arg(c1) Re(a2) Im(a2)

 Re(a3) Im(a3) Re(b1) Im(b1) )(

Wednesday, 30 September 2009



Wilson Matrix-Vector Performance
Single Precision (V=243xT)
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More tricks
• Can impose similarity transforms to improve sparsity

• Can globally change Dirac matrix basis

• Impose local color transformation (gauge transformation)

• SU(3) field = unit matrix in temporal direction

• Must calculate this transformation (done once only)

• 960 Bytes per site (c.f. 1440)

• In total: 33% bandwidth reduction 

B. Gamma Matrix Conventions

It is conventional in lattice QCD software to use the DeGrand-Rossi basis
for the γ matrix projectors which appear in the Wilson-Dirac operator off-
diagonals. In this basis, these are given by

P±1 =





1 0 0 ±i
0 1 ±i 0
0 ∓i 1 0
∓i 0 0 1



 P±2 =





1 0 0 ∓1
0 1 ±1 0
0 ±1 1 0
∓1 0 0 1





P±3 =





1 0 ±i 0
0 1 0 ∓i
∓i 0 1 0
0 ±i 0 1



 P±4 =





1 0 ±1 0
0 1 0 ±1
±1 0 1 0

0 ±1 0 1



 .

We must always load all spinor components regardless of the dimension or
direction. An alternative basis is the UKQCD basis, in which the projectors
have the form

P±1 =





1 0 0 ±i
0 1 ±i 0
0 ∓i 1 0
∓i 0 0 1



 P±2 =





1 0 0 ±1
0 1 ∓1 0
0 ∓1 1 0
±1 0 0 1





P±3 =





1 0 ±i 0
0 1 0 ∓i
∓i 0 1 0
0 ±i 0 1



 P+4 =





2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0



 P−4 =





0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2



 .

The advantage of this approach is that in the temporal dimension we need
only load the upper (lower) spin components for the backwards (forwards)
gather. This halves the amount of bandwidth required to perform the tem-
poral gather, and so increases the kernel’s performance.

References

[1] G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Sz-
abo, “Lattice QCD as a video game,” Comput. Phys. Commun. 177
(2007) 631 [arXiv:hep-lat/0611022].
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Wilson Matrix-Vector Performance
Single Precision (V=243xT)
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Wilson Matrix-Vector Performance
Single Precision (V=243xT)
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Wilson Matrix-Vector Performance
Single Precision, padded (V=243xT)
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Double Precision

• Double precision peak ~ 78 Gflops

• Flop / Bandwidth ratio much more forgiving

• Find and replace float -> double

• Order fields using double2 primitive for coalescing

• Register and shared memory pressure an issue

• Maximum of 128 concurrent threads 

• Not all tricks are useful anymore....

• Performance penalty only a factor ~3 vs. single
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Wilson Matrix-Vector Performance
Double Precision (V = 243xT)
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Multi-GPU
• Need to scale to many GPUs

• Size of problem

• Raw flops

• Preliminary implementation

• No overlap of comms and compute

• 1 MPI process per GPU

• 90% efficiency on 4 GPUs (S1070)

• Many GPUs challenging but possible

• 1 GPU per PCIe slot

• New algorithms
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Krylov Solver 
Implementation

• Complete solver must be on GPU

• Transfer b to GPU

• Solve Ax=b

• Transfer x to CPU 

• Require BLAS level 1 type operations

• AXPY operations: b += ax

• NORM operations: c = (b,b)

• CUBLAS library available

• Better to coalesce operations to minimize bandwidth

• e.g., AXPY_NORM 

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1

xk+1 = xk + αpk+1

k = k+1
}
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Mixed-Precision Solvers
• Require solver tolerance beyond limit of single precision

• e.g., Use defect-correction

• Double precision can be done on CPU or GPU

• Can always check GPU gets correct answer

• Disadvantage is each new single precision solve is a restart

• Use Reliable Updates (Sleijpen and Van der Worst 1996)

while (|rk|> ε) {
rk = b - Axk

pk = A-1rk

xk+1 = xk + pk

}

Double precision
mat-vec and 
accumulate

Inner single 
precision solve
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Wilson Inverter Iterations
(ε=10-8, V=323x96)
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Wilson Inverter Time to Solution
(ε=10-8, V=323x96)
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Wilson Matrix-Vector Performance
Half Precision (V = 243xT)
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Wilson Inverter Iterations
(ε=10-8, V=323x96)
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Wilson Inverter Time to Solution
(ε=10-8, V=323x96)

Increasing conditioner number
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Multigrid Solver
• Use solution on coarse grid to accelerate the solver

• Iterate this process until exact solve is possible (V-cycle)

• Multigrid methods are optimal

• O(N) scaling

• No condition number dependence
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Multigrid on a GPU
• Very difficult to obtain high performance on parallel architectures

• E.g., V=644, 3 level multigrid algorithm, 44 coarsening

• More cores than degrees of freedom

• Efficient multi-GPU impossible on the coarse grid

• Heterogenous Algorithm
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Multigrid on a GPU

• Heterogenous Algorithm => Heterogenous Architecture

• Fine and intermediate grid operations performed on GPU

• Coarse grid operators performed on CPU

• GPU + CPU combination ideal for multigrid

• Mixed precision possible

• Single/Half precision for multigrid preconditioner

• Double precision for outer Krylov wrapper

CPU

GPUGPU GPUGPU
Fine Grid

Intermediate Grid

Coarse Grid

Wednesday, 30 September 2009



How Fast is 
Fast?
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Performance Per MFLOP

=
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Performance Per Watt

=
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Performance Per $

=

Wednesday, 30 September 2009



Conclusions 
• Fantastic algorithmic performance obtained on today GPUs

• Flops per Watt

• Flops per $

• Some work required to get best performance

• Standard libraries are not an option

• Knowledge of the problem required

• Reduce memory traffic at all costs

• Algorithm design critical component

• Bandwidth constraints force complete rethink of problem

• Future work: scale to many GPUs
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QCD on Fermi?
• Better double precision

• Factor of 2 penalty vs. single precision

• More bandwidth

• Current code will scale with bandwidth improvement

• More shared memory

• Store spinors in shared memory to reduce memory traffic

• Super-linear speedup over bandwidth

• Larger address space

• Bigger problems on a single GPU,

• ECC memory

• Deploy non-iterative code on GPU
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