
Center for Computational Science

Toward GPU-accelerated meshfree fluids simulation
using the fast multipole method

Lorena A Barba
Boston University Department of Mechanical Engineering

with:
Felipe Cruz, PhD student
Simon Layton, PhD student
Rio Yokota, postdoc

GPU@BU — Workshop

Topics

‣Meshfree method for fluids simulation — vortex method

‣Computational challenge

๏N–body summation involved

‣ Innovation using new hardware

๏scientific computing on graphics cards (GPU)

2

Meshfree method for fluid simulation

GPU@BU — Workshop 4

Vortex method for fluid simulation

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u

GPU@BU — Workshop

‣ particle method for incompressible, Newtonian fluid

4

Vortex method for fluid simulation

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u

GPU@BU — Workshop

‣ particle method for incompressible, Newtonian fluid

‣ based on vorticity,

4

Vortex method for fluid simulation

ω = ∇× u

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u

GPU@BU — Workshop

‣ particle method for incompressible, Newtonian fluid

‣ based on vorticity,

4

Vortex method for fluid simulation

∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω

ω = ∇× u

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u

GPU@BU — Workshop

‣Vorticity transport equation

‣2D ideal case ➛

๏ if velocity is known for a fluid element at

๏ vorticity transport automatically satisfied by

∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω

Dω

Dt
= 0

xi

dxi

dt
= u(xi, t)

5

GPU@BU — Workshop

‣Vortex method discretization

๏ express vorticity as ➛

๏ interpreted as “particles”

๏ Gaussian distribution

!udxi

dt
= u(xi, t)

ω

ωσ(x, t) =
N∑

i=1

γiζσ(x− xi)

6

ζσ(x) =
1

2πσ2
exp

(
− |x|2

2σ2

)

Weights =
Circulation strength

GPU@BU — Workshop

‣ Find velocity from vorticity: invert

๏ in 2D

๏ get:

with

ω = −∇2ψ

u(x) = − 1
2π

∫
(x− x′)× ω(x′)êz

|x− x′|2 dx′

ωσ(x, t) =
N∑

i=1

γiζσ(x− xi)

7

uσ(x, t) =
N∑

i=1

γiKσ(x− xi)

Kσ =
1

2π|x|2 (−x2, x1)
(

1− exp
(
− |x|2

2σ2

))

GPU@BU — Workshop

‣ Find velocity from vorticity: invert

๏ in 2D

๏ get:

with

ω = −∇2ψ

u(x) = − 1
2π

∫
(x− x′)× ω(x′)êz

|x− x′|2 dx′

Challenge:
Calculating the velocity
⇒ N–body problem

ωσ(x, t) =
N∑

i=1

γiζσ(x− xi)

7

uσ(x, t) =
N∑

i=1

γiKσ(x− xi)

Kσ =
1

2π|x|2 (−x2, x1)
(

1− exp
(
− |x|2

2σ2

))

GPU@BU — Workshop

Advantages

‣ No mesh!

‣ Low numerical diffusion

๏ traditional CFD methods

8

Consider: Helicopter rotor-tip vortices
Source — U.S. Navy's Digital Image site ∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω

Fast solution of N-body problem

GPU@BU — Workshop

‣ Solves N-body problems

‣ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

10

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N]

GPU@BU — Workshop

‣ Solves N-body problems

‣ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

10

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N]

GPU@BU — Workshop

‣ Solves N-body problems

‣ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

10

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N]

GPU@BU — Workshop

‣ space subdivision tree structure

‣ to find “near” and “far” bodies

11

GPU@BU — Workshop

‣The whole algorithm in a sketch

Downward SweepUpward Sweep

Create Multipole Expansions. Evaluate Local Expansions.

P2M M2M M2L L2L L2P

12

GPU@BU — Workshop

‣Open-source library: PetFMM

Code — http://barbagroup.bu.edu/Barba_group/PetFMM.html

13

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://barbagroup.bu.edu/Barba_group/PetFMM.html

Innovation using new hardware

“Intelligent Software” workshop, 20/10/09

“Unwelcome advice”

‣ Incremental path:

‣ scaling to tap dual- and quad-core performance

‣ a flat route (EASY) but leading to nowhere

‣ only option for legacy code

‣ Going “back to the algorithmic drawing board” — HARD

‣ rethinking core methods

‣ 10s, 100s, 1000s of cores

‣ basic logic of the application is influenced — design for parallelism

15

A. Gholum, Intel (June 2008)

“Intelligent Software” workshop, 20/10/09

Key features of the GPU architecture

‣ Nvidia Tesla C1060 (GT200 chip)

‣ 30 multi-processors (MP) with 8 cores each = 240 processor cores
‣ cores clocked at 1.296 GHz
‣ each MP has shared memory of 16 kB
‣ device has 4 GB of global memory

16

“Intelligent Software” workshop, 20/10/09

Key features of the GPU architecture

‣ Nvidia GT200 chip

1.296 GHz x 10 TCP x 3 SM x 8 SP
x 2 flop/cycle = 622 Gflop/s

1.296 GHz x 10 TCP x 3 SM x 2 SFU
x 4 FPU x 1 flop/cycle = 311 Gflop/s

Total = 933 Gflop/s

17

!"#$%"

&'&#()

*+, *+, *+, *+, *+,

*+, *+, *+, *+, *+,

!+-./012

!"#$%&'(

34('%&156

&7"4182(#/'99#(
3:*';

*';47('

2(#/'99#(

/"794'(

3:

3:

3+ 3+ 3+ 3+

3+ 3+ 3+ 3+

3<- 3<-

30%('=

&'&#()

)*$

+"#

,*-)

“Intelligent Software” workshop, 20/10/09

Key features of the CUDA model

18

Released Feb. 2007

“Intelligent Software” workshop, 20/10/09

Key features of the CUDA model

‣ “kernels” — work that will be performed by each parallel thread

18

Released Feb. 2007

“Intelligent Software” workshop, 20/10/09

Key features of the CUDA model

‣ “kernels” — work that will be performed by each parallel thread

18

Released Feb. 2007

‣ hierarchy of thread blocks and a grid of thread blocks

“Intelligent Software” workshop, 20/10/09

Key features of the CUDA model

‣ “kernels” — work that will be performed by each parallel thread

18

Released Feb. 2007

‣ hierarchy of thread blocks and a grid of thread blocks

“Intelligent Software” workshop, 20/10/09

Key features of the CUDA model

‣ “kernels” — work that will be performed by each parallel thread

18

Released Feb. 2007

‣ hierarchy of thread blocks and a grid of thread blocks

‣ threads in a thread block reside in the same MP and cooperate via
their shared memory and synchronization points

shared memory
(16 kB)

Formulating mathematical algorithms
for the new architecture

GPU@BU — Workshop

Challenges of the paradigm shift

20

GPU@BU — Workshop

Challenges of the paradigm shift

‣ Limiting factor for performance

๏ ability of programmers to produce code that scales

20

GPU@BU — Workshop

Challenges of the paradigm shift

‣ Limiting factor for performance

๏ ability of programmers to produce code that scales

‣ Rethink algorithms

๏ massively-parallel architecture (10k threads)

๏ computationally-intensive will be the winner

20

GPU@BU — Workshop

Challenges of the paradigm shift

‣ Limiting factor for performance

๏ ability of programmers to produce code that scales

‣ Rethink algorithms

๏ massively-parallel architecture (10k threads)

๏ computationally-intensive will be the winner

‣ Implementation difficulties

๏ steep learning curve of getting down to the metal

๏ memory resources handled by hand

๏ data access pattern now crucial

20

GPU@BU — Workshop

“Resource-conscious” algorithms

‣ Data-parallel programming

๏ Number of threads — thousands !

‣Memory

๏ shared memory — only 16 kB !

๏ global memory — high cost of access: 400-600 cycles

‣ Branching

๏ MPs manage threads in groups of 32, called warps

๏ In a warp, threads start and end together

๏ In branching — warp executes all paths serially !

21

affects the entire algorithm

GPU@BU — Workshop

‣ Recent work:

22

Formulation of the FMM for the GPU

GPU@BU — Workshop

“going back to the algorithmic drawing board”

‣M2L = matrix-vector multiplication

๏ dense matrix of size equal to 2p2

๏ large number of mat-vecs — 27 x 4L (in 2D)

‣ e.g. L=5 ⇒ 27,648 mat-vecs

‣ Version 0 — each mat-vec in a separate thread

๏ e.g. p=12, matrix size 2p2 =288 ⇒ 2304 bytes

‣ max. of 6 fit in shared memory — too few threads!

23

Felipe Cruz, PhD student

GPU@BU — Workshop

“going back to the algorithmic drawing board”

‣M2L = matrix-vector multiplication

๏ dense matrix of size equal to 2p2

๏ large number of mat-vecs — 27 x 4L (in 2D)

‣ e.g. L=5 ⇒ 27,648 mat-vecs

‣ Version 0 — each mat-vec in a separate thread

๏ e.g. p=12, matrix size 2p2 =288 ⇒ 2304 bytes

‣ max. of 6 fit in shared memory — too few threads!

23

compute on-the-fly

Felipe Cruz, PhD student

GPU@BU — Workshop

“going back to the algorithmic drawing board”

‣ structure of matrix

‣ optimization:

๏ matrix-free mat-vec

๏ traverse matrix by diagonals

๏ reuse terms

24

ME LE

GPU@BU — Workshop

“going back to the algorithmic drawing board”

‣ Version 1 : each thread block transforms one ME for all the interaction list.

๏ max 8 concurrent thread blocks per MP ⇒ 27x8= 216 concurrent threads

๏ current maximum of threads is 512 — still under-utilized

25

Result:

20 Gflops peak

2.5x106 t/s

We are not reporting speed-up anymore,
because it does not mean very much.
“A CPU run” produced 1.42x105 t/s

GPU@BU — Workshop

“going back to the algorithmic drawing board”

‣ we’re still not happy —want more parallelism

‣ too many memory transactions

๏ result moved to global memory — one LE, size 2p

๏ 27 results ⇒ 27 x 2p = 648 floats for p=12

๏ only 32 “workers” to move results ⇒ 20 memory transactions

26

GPU@BU — Workshop

“going back to the algorithmic drawing board”

‣ Version 2 : one thread per element of the LE

๏ each thread does 1 row-vec multiply

๏ no thread synchronization required

๏ BUT — cannot use the efficient “diagonal traversal”
 (about 25% more work)

27

ME LE

GPU@BU — Workshop

“going back to the algorithmic drawing board”

‣ Version 2 : avoiding branching

๏ each thread pre-computes and additional factors added as needed

๏ loop over in each thread: naturally would stop at different value

๏ instead (counter-intuitive!), all threads loop until but store only
their relevant power

‣ no optimizing/tuning yet ...

28

tn+1 t

n

n = p + 1

Result:

94 Gflops peak

6x106 t/s

GPU@BU — Workshop

key features of new algorithm

1. increased number of threads per block (we can have any number)

2. all threads always perform the same computations (on different data)

3. loop-unrolling (if done manually, performance gain even greater!)

4. reduced accesses to global memory

5. when accessing memory, ensure it is coalesced

‣ Final step: overlap memory accesses

29

Result:

480 Gflops peak

19x106 t/s

GPU@BU — Workshop

Context of this project

‣ Fast summation algorithms

๏we have a distributed parallel library of the fast multipole method,
PetFMM (*)

๏developing GPU implementations
‣ currently running at about 500 gigaflops on one card
‣ speedups w.r.t. fastest CPU available.

‣ Applications:

๏ meshfree fluid simulation, using N-body solvers

30

(*) In collaboration with Matthew Knepley (UChicago)

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://barbagroup.bu.edu/Barba_group/PetFMM.html

GPU@BU — Workshop

Frontiers of CFD

‣ Need to straddle many scales

‣ Algorithms to detect and adapt to solution

๏ meshfree methods naturally can adapt

‣ Hardware-aware software

๏ meshfree methods well-suited for GPU!

‣ Tackle problems with complex/moving geometry

‣ Algorithm/software that allows real-time simulation

31

