
Center for Computational Science

Toward GPU-accelerated meshfree fluids simulation 
using the fast multipole method

Lorena A Barba
Boston University  Department of Mechanical Engineering

with:
Felipe Cruz, PhD student
Simon Layton, PhD student
Rio Yokota, postdoc



GPU@BU — Workshop

Topics

‣Meshfree method for fluids simulation — vortex method

‣Computational challenge

๏N–body summation involved

‣ Innovation using new hardware

๏scientific computing on graphics cards (GPU)
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Vortex method for fluid simulation

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u



GPU@BU — Workshop

‣ particle method for incompressible, Newtonian fluid

4

Vortex method for fluid simulation

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u



GPU@BU — Workshop

‣ particle method for incompressible, Newtonian fluid

‣ based on vorticity,

4

Vortex method for fluid simulation

ω = ∇× u

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u



GPU@BU — Workshop

‣ particle method for incompressible, Newtonian fluid

‣ based on vorticity,
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Vortex method for fluid simulation

∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω

ω = ∇× u

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∇2u
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‣Vorticity transport equation

‣2D ideal case     ➛

๏ if velocity is known for a fluid element at

๏ vorticity transport automatically satisfied by 

∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω

Dω

Dt
= 0

xi

dxi

dt
= u(xi, t)
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‣Vortex method discretization

๏ express vorticity as     ➛

๏ interpreted as “particles”

๏ Gaussian distribution

!udxi

dt
= u(xi, t)

ω

ωσ(x, t) =
N∑

i=1

γiζσ(x− xi)
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ζσ(x) =
1

2πσ2
exp

(
− |x|2

2σ2

)

Weights =
Circulation strength
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‣ Find velocity from vorticity:   invert

๏ in 2D

๏ get:

with

ω = −∇2ψ

u(x) = − 1
2π

∫
(x− x′)× ω(x′)êz

|x− x′|2 dx′

ωσ(x, t) =
N∑

i=1

γiζσ(x− xi)
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uσ(x, t) =
N∑

i=1

γiKσ(x− xi)

Kσ =
1

2π|x|2 (−x2, x1)
(

1− exp
(
− |x|2

2σ2

))
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‣ Find velocity from vorticity:   invert

๏ in 2D

๏ get:

with

ω = −∇2ψ

u(x) = − 1
2π

∫
(x− x′)× ω(x′)êz

|x− x′|2 dx′

Challenge:
Calculating the velocity
⇒ N–body problem

ωσ(x, t) =
N∑

i=1

γiζσ(x− xi)
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uσ(x, t) =
N∑

i=1

γiKσ(x− xi)

Kσ =
1

2π|x|2 (−x2, x1)
(

1− exp
(
− |x|2

2σ2
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Advantages

‣ No mesh!

‣ Low numerical diffusion

๏ traditional CFD methods
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Consider: Helicopter rotor-tip vortices 
Source — U.S. Navy's Digital Image site ∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω



Fast solution of N-body problem
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‣ Solves N-body problems

‣ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)
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Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N ]
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‣ space subdivision  tree structure

‣ to find “near” and “far” bodies
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‣The whole algorithm in a sketch

Downward SweepUpward Sweep

Create Multipole Expansions. Evaluate Local Expansions.

P2M M2M M2L L2L L2P
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‣Open-source library:  PetFMM

Code — http://barbagroup.bu.edu/Barba_group/PetFMM.html
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http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://barbagroup.bu.edu/Barba_group/PetFMM.html


Innovation using new hardware
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“Unwelcome advice”

‣ Incremental path:  

‣ scaling to tap dual- and quad-core performance

‣ a flat route  (EASY) but leading to nowhere

‣ only option for legacy code

‣ Going “back to the algorithmic drawing board” — HARD

‣ rethinking core methods

‣ 10s, 100s, 1000s of cores 

‣ basic logic of the application is influenced — design for parallelism 
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A. Gholum, Intel (June 2008)



“Intelligent Software” workshop, 20/10/09

Key features of the GPU architecture

‣ Nvidia Tesla C1060 (GT200 chip)

‣ 30 multi-processors (MP) with 8 cores each = 240 processor cores
‣ cores clocked at 1.296 GHz
‣ each MP has shared memory of 16 kB
‣ device has 4 GB of global memory
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“Intelligent Software” workshop, 20/10/09

Key features of the GPU architecture

‣ Nvidia GT200 chip

1.296 GHz x 10 TCP x 3 SM x 8 SP 
x 2 flop/cycle = 622 Gflop/s

1.296 GHz x 10 TCP x 3 SM x 2 SFU 
x 4 FPU x 1 flop/cycle = 311 Gflop/s

Total = 933 Gflop/s
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Key features of the CUDA model
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“Intelligent Software” workshop, 20/10/09

Key features of the CUDA model

‣ “kernels” — work that will be performed by each parallel thread
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Released Feb. 2007

‣ hierarchy of thread blocks and a grid of thread blocks

‣ threads in a thread block reside in the same MP and cooperate via 
their shared memory and synchronization points

shared memory 
(16 kB)



Formulating mathematical algorithms 
for the new architecture
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Challenges of the paradigm shift

‣ Limiting factor for performance 

๏ ability of programmers to produce code that scales

‣ Rethink algorithms

๏ massively-parallel architecture (10k threads)

๏ computationally-intensive will be the winner

‣ Implementation difficulties

๏ steep learning curve of getting down to the metal

๏ memory resources handled by hand

๏ data access pattern now crucial
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“Resource-conscious” algorithms

‣ Data-parallel programming

๏ Number of threads — thousands !

‣Memory

๏ shared memory —   only 16 kB !

๏ global memory —  high cost of access: 400-600 cycles

‣ Branching

๏ MPs manage threads in groups of 32, called warps

๏ In a warp, threads start and end together

๏ In branching — warp executes all paths serially !
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affects the entire algorithm
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‣ Recent work:
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Formulation of the FMM for the GPU
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“going back to the algorithmic drawing board”

‣M2L = matrix-vector multiplication

๏ dense matrix of size equal to 2p2

๏ large number of mat-vecs — 27 x 4L  (in 2D)

‣ e.g. L=5  ⇒  27,648 mat-vecs

‣ Version 0 — each mat-vec in a separate thread

๏ e.g. p=12, matrix size 2p2 =288 ⇒ 2304 bytes

‣ max. of 6 fit in shared memory — too few threads!
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Felipe Cruz, PhD student
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compute on-the-fly

Felipe Cruz, PhD student
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“going back to the algorithmic drawing board”

‣ structure of matrix

‣ optimization:

๏ matrix-free mat-vec

๏ traverse matrix by diagonals

๏ reuse terms
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ME LE
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“going back to the algorithmic drawing board”

‣ Version 1 : each thread block transforms one ME for all the interaction list.

๏ max 8 concurrent thread blocks per MP ⇒ 27x8= 216 concurrent threads

๏ current maximum of threads is 512  — still under-utilized
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Result:

20 Gflops peak

2.5x106  t/s

We are not reporting speed-up anymore,
because it does not mean very much.
“A CPU run”  produced 1.42x105 t/s
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“going back to the algorithmic drawing board”

‣ we’re still not happy —want more parallelism

‣ too many memory transactions

๏ result moved to global memory — one LE, size 2p

๏ 27 results ⇒ 27 x 2p = 648 floats for p=12

๏ only 32 “workers” to move results ⇒ 20 memory transactions
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“going back to the algorithmic drawing board”

‣ Version 2 :  one thread per element of the LE

๏ each thread does 1 row-vec multiply

๏ no thread synchronization required

๏ BUT — cannot use the efficient “diagonal traversal” 
              (about 25% more work)
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ME LE
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“going back to the algorithmic drawing board”

‣ Version 2 :  avoiding branching

๏ each thread pre-computes             and additional    factors added as needed 

๏ loop over     in each thread:  naturally would stop at different value

๏ instead (counter-intuitive!), all threads loop until                       but store only 
their relevant power

‣ no optimizing/tuning yet ...
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tn+1 t

n

n = p + 1

Result:

94 Gflops peak

6x106  t/s
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key features of new algorithm

1. increased number of threads per block (we can have any number)

2. all threads always perform the same computations (on different data)

3. loop-unrolling (if done manually, performance gain even greater!)

4. reduced accesses to global memory

5. when accessing memory, ensure it is coalesced

‣ Final step:  overlap memory accesses
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Result:

480 Gflops peak

19x106  t/s
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Context of this project

‣ Fast summation algorithms

๏we have a distributed parallel library of the fast multipole method, 
PetFMM  (*)

๏developing GPU implementations
‣ currently running at about 500 gigaflops on one card
‣ speedups w.r.t. fastest CPU available.

‣ Applications:

๏ meshfree fluid simulation, using N-body solvers
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(*) In collaboration with Matthew Knepley (UChicago)

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://barbagroup.bu.edu/Barba_group/PetFMM.html
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Frontiers of CFD

‣ Need to straddle many scales

‣ Algorithms to detect and adapt to solution

๏ meshfree methods naturally can adapt

‣ Hardware-aware software

๏ meshfree methods well-suited for GPU!

‣ Tackle problems with complex/moving geometry

‣ Algorithm/software that allows real-time simulation
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