Center for Computational Science

Toward GPU-accelerated meshfree fluids simulation using the fast multipole method

Lorena A Barba

Boston University Department of Mechanical Engineering

with:

Felipe Cruz, PhD student Simon Layton, PhD student Rio Yokota, postdoc

Topics

- Meshfree method for fluids simulation vortex method
- Computational challenge
 - ${\scriptstyle \odot}$ N-body summation involved
- Innovation using new hardware
 - scientific computing on graphics cards (GPU)

Meshfree method for fluid simulation

BU College of Engineering

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{\nabla p}{\rho} + \nu \nabla^2 u$$

particle method for incompressible, Newtonian fluid

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{\nabla p}{\rho} + \nu \nabla^2 u$$

particle method for incompressible, Newtonian fluid

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{\nabla p}{\rho} + \nu \nabla^2 u$$

 \blacktriangleright based on vorticity, $\omega = \nabla \times u$

particle method for incompressible, Newtonian fluid

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{\nabla p}{\rho} + \nu \nabla^2 u$$

 \blacktriangleright based on vorticity, $\omega = \nabla imes u$

$$\frac{\partial \omega}{\partial t} + u \cdot \nabla \omega = \omega \cdot \nabla u + \nu \nabla^2 \omega$$

Vorticity transport equation

$$\frac{\partial \omega}{\partial t} + u \cdot \nabla \omega = \omega \cdot \nabla u + \nu \nabla^2 \omega$$

► 2D ideal case → $\frac{D\omega}{Dt} = 0$

ullet if velocity is known for a fluid element at x_i

vorticity transport automatically satisfied by

$$\frac{dx_i}{dt} = u(x_i, t)$$

- Vortex method discretization
 - express vorticity as \rightarrow

$$\omega_{\sigma}(x,t) = \sum_{i=1}^{N} \gamma_i \zeta_{\sigma}(x-x_i)$$

 ΛT

 \circ interpreted as "particles" ω

$$\frac{dx_i}{dt} = u(x_i, t)$$

$$\vec{u}$$

• Gaussian distribution $\zeta_{\sigma}(x) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{|x|^2}{2\sigma^2}\right)$

Find velocity from vorticity: invert $\omega = -\nabla^2 \psi$

• in 2D
•
$$u(x) = -\frac{1}{2\pi} \int \frac{(x - x') \times \omega(x')\hat{e}_z}{|x - x'|^2} dx'$$

• get:
N

$$u_{\sigma}(x,t) = \sum_{i=1}^{n} \gamma_i \mathbb{K}_{\sigma}(x-x_i)$$

with

$$\mathbb{K}_{\sigma} = \frac{1}{2\pi |x|^2} (-x_2, x_1) \left(1 - \exp\left(-\frac{|x|^2}{2\sigma^2}\right) \right)$$

Find velocity from vorticity: invert $\omega = -\nabla^2 \psi$

• in 2D
$$u(x) = -\frac{1}{2\pi} \int \frac{(x - x') \times \omega(x')\hat{e}_z}{|x - x'|^2} dx'$$

• get: N

$$u_{\sigma}(x,t) = \sum_{i=1}^{N} \gamma_i \mathbb{K}_{\sigma}(x-x_i)$$

with

$$\mathbb{K}_{\sigma} = \frac{1}{2\pi |x|^2} (-x_2, x_1) \left(1 - \exp\left(-\frac{|x|^2}{2\sigma^2}\right) \right)$$

Challenge: Calculating the velocity \Rightarrow *N*-body problem

Advantages

- No mesh!
- Low numerical diffusion
 - traditional CFD methods

 $\epsilon \propto \nabla^2 \omega$

$$\frac{\partial \omega}{\partial t} + u \cdot \nabla \omega = \omega \cdot \nabla u + \nu \nabla^2 \omega$$

Source — U.S. Navy's Digital Image site

Fast solution of N-body problem

BU College of Engineering

Fast multipole method

- Solves N-body problems
 - e.g. astrophysical gravity interactions
 - ${\scriptstyle \bullet}$ reduces operation count from O(N²) to O(N)

$$f(y) = \sum_{i=1}^{N} c_i \mathbf{K}(y - x_i) \qquad y \in [1...N]$$

Fast multipole method

- Solves N-body problems
 - e.g. astrophysical gravity interactions
 - ${\ensuremath{\bullet}}$ reduces operation count from O(N²) to O(N)

$$f(y) = \sum_{i=1}^{N} c_i \mathbf{K}(y - x_i) \qquad y \in [1...N]$$

Fast multipole method

- Solves N-body problems
 - ▶ e.g. astrophysical gravity interactions
 - ${\ensuremath{\bullet}}$ reduces operation count from O(N²) to O(N)

$$f(y) = \sum_{i=1}^{N} c_i \mathbf{K}(y - x_i) \qquad y \in [1...N]$$

- ▶ space subdivision tree structure
 - ▸ to find "near" and "far" bodies

▶ The whole algorithm in a sketch

► Open-source library: PetFMM

Code - http://barbagroup.bu.edu/Barba_group/PetFMM.html

Innovation using new hardware

BU College of Engineering

- Incremental path:
 - scaling to tap dual- and quad-core performance
 - ▶ a flat route (EASY) but leading to nowhere
 - only option for legacy code
- Going "back to the algorithmic drawing board" HARD
 - rethinking core methods
 - ▶ 10s, 100s, 1000s of cores
 - ▶ basic logic of the application is influenced design for parallelism

A. Gholum, Intel (June 2008)

Key features of the GPU architecture

- Nvidia Tesla C1060 (GT200 chip)
 - ▶ 30 multi-processors (MP) with 8 cores each = 240 processor cores
 - ▶ cores clocked at 1.296 GHz
 - each MP has *shared memory* of 16 kB
 - device has 4 GB of global memory

Key features of the GPU architecture

Nvidia GT200 chip

1.296 GHz x 10 TCP x 3 SM x 8 SP x 2 flop/cycle = 622 Gflop/s

1.296 GHz x 10 TCP x 3 SM x 2 SFU x 4 FPU x 1 flop/cycle = 311 Gflop/s

Total = 933 Gflop/s

Released Feb. 2007

Key features of the CUDA model

Released Feb. 2007

- ▶ "kernels" work that will be performed by each parallel *thread*
 - hierarchy of thread blocks and a grid of thread blocks

- ▶ "kernels" work that will be performed by each parallel *thread*
 - hierarchy of thread blocks and a grid of thread blocks

- ▶ "kernels" work that will be performed by each parallel *thread*
 - hierarchy of thread blocks and a grid of thread blocks

 threads in a thread block reside in the same MP and cooperate via their shared memory and synchronization points

Formulating mathematical algorithms for the new architecture

BU College of Engineering

- Limiting factor for performance
 - ability of programmers to produce *code that scales*

- Limiting factor for performance
 - ability of programmers to produce *code that scales*
- Rethink algorithms
 - massively-parallel architecture (10k threads)
 - computationally-intensive will be the winner

- Limiting factor for performance
 - ability of programmers to produce *code that scales*
- Rethink algorithms
 - massively-parallel architecture (10k threads)
 - computationally-intensive will be the winner
- Implementation difficulties
 - steep learning curve of *getting down to the metal*
 - memory resources handled by hand
 - data access pattern now crucial

"Resource-conscious" algorithms

Data-parallel programming

• Number of threads — thousands !

- Memory
 - shared memory only 16 kB !
 - global memory high cost of access: 400-600 cycles
- Branching
 - MPs manage threads in groups of 32, called *warps*
 - In a warp, threads start and end together
 - In branching warp executes all paths serially !

Formulation of the FMM for the GPU

Recent work:

Journal of Computational Physics 227 (2008) 8290-8313

Fast multipole methods on graphics processors

Nail A. Gumerov *, Ramani Duraiswami

Perceptual Interfaces and Reality Laboratory, Computer Science and UMIACS, University of Maryland, College Park, United States Fantalgo, LLC, Elkridge, MD, United States

Table 6

Performance for the FMM downward pass

lmax	<i>p</i> = 4			<i>p</i> = 8			<i>p</i> = 12		
	CPU (s)	GPU (s)	Ratio	CPU (s)	GPU (s)	Ratio	CPU (s)	GPU (s)	Ratio
3	0.031	0.0146	2.1	0.093	7.71E-02	1.2	0.218	0.233	0.9
4	0.203	0.0614	3.3	0.936	2.65E-01	3.5	2.39	0.718	3.3
5	1.86	0.359	5.2	8.55	1.80	4.8	21.9	4.84	4.5

Felipe Cruz, PhD student

- M2L = matrix-vector multiplication
 - dense matrix of size equal to 2p²
 - large number of mat-vecs 27×4^{L} (in 2D)
 - ▶ e.g. L=5 \Rightarrow 27,648 mat-vecs
- Version 0 each mat-vec in a separate thread
 - e.g. p=12, matrix size $2p^2 = 288 \Rightarrow 2304$ bytes
 - ▶ max. of 6 fit in shared memory too few threads!

Felipe Cruz, PhD student

structure of matrix

$$a_{nk} = (-1)^n \left(\begin{array}{c} n+k\\k\end{array}\right) t^{-k-n-1}$$

- optimization:
 - matrix-free mat-vec
 - traverse matrix by diagonals
 - reuse terms

- Version 1 : each thread block transforms one ME for all the interaction list.
 - max 8 concurrent thread blocks per MP \Rightarrow 27x8= 216 concurrent threads
 - current maximum of threads is 512 still under-utilized

Result:					
20 Gflops peak					
2.5x10 ⁶ t/s					

We are not reporting speed-up anymore, because it does not mean very much. "A CPU run" produced 1.42x10⁵ t/s

- we're still not happy —want more parallelism
- too many memory transactions
 - result moved to global memory one LE, size 2p
 - 27 results \Rightarrow 27 x 2p = 648 floats for p=12
 - only 32 "workers" to move results \Rightarrow 20 memory transactions

- Version 2 : one thread per *element* of the LE
 - each thread does 1 row-vec multiply
 - no thread synchronization required
 - BUT cannot use the efficient "diagonal traversal" (about 25% more work)

- Version 2: avoiding *branching* $a_{nk} = (-1)^n \binom{n+k}{k} t^{-k-n-1}$
 - \bullet each thread pre-computes t^{n+1} and additional t factors added as needed
 - ullet loop over n in each thread: naturally would stop at different value
 - ${\ensuremath{\circ}}$ instead (counter-intuitive!), all threads loop until $\,n=p+1\,$ but store only their relevant power
- no optimizing/tuning yet ...

key features of new algorithm

- 1. increased *number of threads* per block (we can have any number)
- 2. all threads always perform the *same computations* (on different data)
- **3.** *loop-unrolling* (if done manually, performance gain even greater!)
- 4. reduced accesses to global memory
- 5. when accessing memory, ensure it is *coalesced*
- ► Final step: overlap memory accesses

Result: 480 Gflops peak 19x10⁶ t/s

Context of this project

- Fast summation algorithms
 - we have a distributed parallel library of the fast multipole method, \underline{PetFMM} (*)
 - developing GPU implementations
 - currently running at about 500 gigaflops on one card
 - ▶ speedups w.r.t. fastest CPU available.
- Applications:
 - meshfree fluid simulation, using N-body solvers

(*) In collaboration with Matthew Knepley (UChicago)

Frontiers of CFD

- Need to straddle many scales
- Algorithms to detect and adapt to solution
 meshfree methods naturally can adapt
- Hardware-aware software
 - meshfree methods well-suited for GPU!
- Tackle problems with complex/moving geometry
- Algorithm/software that allows real-time simulation